Assignments:

- midterm
- final
- small assignments
- reading summaries (1-page)
- group project

Group project... can i do anything with compilers/linguistics? ...
Notes:

- Contact E. re wpe?
- Add self to mailing list?
1 Data-flow analysis

1.1 Control Flow Graph (CFG)

diagram where nodes are commands and edges are possible transitions between commands.

1.2 Liveness

A variable is "live" on an edge $i \rightarrow j$ of a control flow graph iff the program’s behavior at j or future(j) depends on the value of the variable at node i.

If two variables are live at mutually exclusive edges, then they can share a register.

Liveness is a property that flows "backwards" through CFGs: find usages of v, and follow CFG backwards (on all paths) until you find a definition of v. All edges traversed are live.

1.3 Back to CFGs

CFGs have a number of properties. These properties "flow" through the CFG in specific ways. E.g., liveness flows backwards through the CFG. Other properties flow in different ways.

Terms

- out-edge: an edge leading out of a node
- in-edge: an edge leading into a node
- successor node: a node connected by an out-edge
- predecessor node: a node connected by an in-edge
- $\text{pred}[n] =$ set of predecessor nodes of n
- $\text{succ}[n] =$ set of successor nodes of n
- $\text{def}:$ a node that defines a variable
- $\text{use}:$ a node that reads a variable
- $\text{defs of a variable} =$ set of nodes
- $\text{defs of a node} =$ set of variables

1.4 Back to liveness

Formal definition of liveness:

v is live on edge e iff:

1. $\exists \ p \in \text{paths from } e \text{ to a USE of } v$
2. p does not go through any DEF of v
Defs for liveness:

- a variable is live-in at a node if it is live on any of the node’s in-edges.
- a variable is live-out at a node if it is live on any of the node’s out-edges.

Finding liveness:

1. if \(v \in \text{use}[n] \), then \(v \in \text{live-in}[n] \)
2. if \(n1 \rightarrow n2 \), \(v \in \text{live-in}[n2] \), then \(v \in \text{live-out}[n1] \)
3. if \(v \in \text{live-out}[n] \) and \(v \notin \text{def}[n] \), then \(v \in \text{live-in}[n] \)

So: \(\text{in}[n] = \text{use}[n] \cup (\text{out}[n]-\text{def}[n]) \) \(\text{out}[n] = \cup\{s \in \text{succ}[n]\} \) \(\text{in}[s] \)

Finding it

iterate the in and out equations until we get convergence. to make it faster:

- make sure we compute things in the right order.. namely, backwards.
- only consider basic blocks
send email to listsrv about project?

2 SSA

SSA can be used to make UD and DU chains more sparse. SSA is an "alternate" program representation. memo to myself – can ssa be used in bytecode? last minute optimizations.. whee.

2.1 Alternate program representations

- can allow analyses and transformations to be simpler & more efficient/effective.
- may not be "executable"
- may make inefficient use of space

2.2 Static Single Assignment Form (SSA)

Idea: each assignment is to a uniquely named variable Property: each use has exactly 1 reaching def Effects: makes UD chains sparse

Transformation:

- rename each def
- rename uses reached by that def
- trivial for straight-line code
- for joins, we need a new operation ϕ. (special case: loops)

2.3 SSA vs UD/DU chains

Advantages of SSA:

- more compact
- easier to update/manipulate
- each use hase only 1 def
- value merging is explicit
- eliminates "false" dependencies

3 Transforming to SSA

- Insert ϕ-functions
- Rename variables

3.1 Insert ϕ-functions

basic rule: If $x \rightarrow z$ and $y \rightarrow z$ converge at z, and x and y contain defs for v, then ϕ for v is inserted at z. placing approaches:

- minimal = as few as possible, subject to basic rule
- briggs-minimal = minimal, but v must be live across some basic block. Intuition – if a variable v is assigned and used in the same basic block, and never used again, then don’t bother with it.
pruned = same, except dead \(\phi \)'s not listed. this will have a subset of the \(\phi \) functions of briggs-minimal.

Machinery

domination:
- \(d \text{ dom } i \) if all paths from entry\(\rightarrow i \) include \(d \)
- \((d \text{ sdom } i) \) iff \((d \text{ dom } i) \) and \((d \neq i) \)

dominance frontier:
- dominance frontier of \(d \) is the set of nodes that are "just barely" not dominated by \(d \).
- dominance frontier of a set of nodes is the union of the dominance frontiers of the nodes.
- to find dominance frontier: find set of nodes dominated by \(d \), then go "one beyond" (including loop up to \(d \) but not loops to anything else that \(d \) dominates).
- dominance frontier nodes are nodes where value from \(d \) merges with some other value.

Using dominance frontiers

1. find dominance frontier of the defs of a var. Then add everything from the dominance frontier to the set of defs, and find the dominance frontier of that.. repeat.

Theorem: iterated dominance frontier = set of nodes that require \(\phi \)-functions for \(v \).

3.2 Rename Variables
4 Using SSA

4.1 Constant Propagation

- Simple: Constant for all paths through a program
- Simple sparse
- Conditional: Constant for all actual paths through a program
- Conditional sparse
5 Interprocedural Analysis

DLLs with summaries?