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Wednesday, January 9, 2002

1 Markov Decision Process

• State space S
• Actions a, b, . . . from each state
• Transition probabilities P(·|s,a), P(s’|s,a)
• (local) Rewards R(s,a) ∈ [0,1]
• Discounted reward: r0 + γ r1 + γ2r2 + . . . (c.f. finite horizon)
• Policy Π: states → actions
• Planning: given MDP, compute (near) optimal policy

We are assuming full observability, i.e., we always know what state we’re currently in.

(Pset 1: available later today/tonight.)

1.1 Value Functions

• Π = Policy
• Define value function VΠ(s): VΠ(s) = expected discounted return starting from s and using Π.
• VΠ(s) = R(s,π(s)) + γ(

∑

s’P(s’|s,Π(s))V
Π(s))

• Now, define V*(s) to be the optimal exected discouted return from s. I.e., V*(s) = maxΠ{V
Π(s)}

1.2 The planning problem

• ∃ Π* s.t. VΠ*(s) = V*(s) Argument: if there were a better choice for one time we arrive at V(s), then
we should always do the same thing there..

Planning problem: find Π* (= optimal plan)

• You know the transition probabilities
• You know the rewards
• You want to find the policy

Bellman optimality:

• V*(s) = max{ R(s,a) + γ
∑

s’P(s’|s,a)V
*(s’) }

• Payoff has 2 components: immediate, and discounted.
• Π*(s) = argmaxa{ R(s,a) + γ

∑

s’P(s’|s,a)V
*(s’) }

– Greedy(V*)

1.3 Finding the optimal policy

Try to find a value that makes the bellman optimality equation true:

• V*(s) = maxa { R(s,a) + γ
∑

s’P(s’|s,a)V
*(s’) }

Value Iteration

Iterate v, an estimate of V*(s):

• v(s) ← maxa { R(s,a) + γ
∑

s’P(s’|s,a)v(s’) }
• If v converges, we’re done.

v does converge; why?
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• Define error ∆t = maxs{ |vt(s) - V
*(s)| }

• ∆t+1 = maxs{ |vt+1(s) - V
*(s)| }

• ∆t+1 = maxs{ |maxa { R(s,a) + γ
∑

s’P(s’|s,a)vt(s’) } - maxa { R(s,a) + γ
∑

s’P(s’|s,a)V
*(s’) }| }

Note that:

• |max{f(a)} - max{g(a)}}| ≤ |maxa{f(a) - g(a)}|

So:

• ∆t+1 ≤ maxs{ |maxa { R(s,a) + γ
∑

s’P(s’|s,a)vt(s’) - R(s,a) + γ
∑

s’P(s’|s,a)V
*(s’) }| }

• ∆t+1 ≤ maxs{ |maxa { γ
∑

s’P(s’|s,a)vt(s’) - γ
∑

s’P(s’|s,a)V
*(s’) }| }

• ∆t+1 ≤ maxs{ |maxa { γ
∑

s’P(s’|s,a)(vt(s’)-V
*(s’)) }| }

∆t+1 is greatest where:

• vt(s’)-V
*(s’) = ∆t

Since we’re taking the expectation over a pdf, we can do:

• ∆t+1 ≤ maxs,a,s’{ |vt(s’) - V
*(s’)| }

So:

• ∆t+1 ≤ γ∆t

So if we make t≥ log(1/ε)/log(1/γ), then we converge to within ε.

Our optimal policy π = greedy(v)

If we use a value function that’s close to optimal, then is the resulting policy greedy(v) close to optimal?

n.b., v and Vπ are not necessarily the same..

The finite horizon nature of the problem is really what allows us to put bounds on how close we will be..
our estimation error is limited..

Time: O(tn2) for t iterations, n states.

1.4 Policy Evaluation

Given Π, we want to compute VΠ(s).

• VΠ(s) = R(s,Π(s)) + γ
∑

s’P(s’|s,a)V
Π(s’)

This is basically just n linear equations, in n variables (variables are vs=V
Π(s))

vs = R(s,Π(s)) + γ
∑

s’P(s’|s,a)vs’

Solving n linear equations: O(n3) time

But it’s exact (not approximate): we can exactly evaluate a given particular policy in n3 time..

1.5 Notation..

• VΠ(s) = expected return
• QΠ(s,a) = R(s,a) + γ

∑

s’P(s’|s,a)v
Π(s’) I.e., if we ignore policy Π for one step, and do a instead; and

from then on, we use policy Π, then what expected discounted return do we get?

1.6 Policy Iteration

• Iterate over a policy πt
• πt+1(s) = argmaxa { Q

π t(s,a) }
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• πt+1(s) = argmaxa { R(s,a) + γ
∑

s’P(s’|s,a)v
{πt}(s’) }

How does this differ from value iteration? First, there’s no approximation. I.e., we compute Q values directly.

Convergence

• whenever argmaxa{Q
π t(s,a)}6=πt(s), we change our policy

• whenever this happens, it’s a good thing (i.e., increases our value function)
• ∃ finite number of policies
• we change whenever we’re suboptimal
• i.e., policy iteration will always converge to the optimal solution in a finite limited time.

Notation. . .

• P(s’, π, t) = probability that we’re in state s’ after t iterations, according to policy π.
• In particular:

– P(s’, π, 1) = P(s’|s,π(s))
– P(s’|s,π,0) = {1 iff s’=s}

Policy iteration & value iteration are relatable in a precise way
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Monday, January 14, 2002

2 Probability Theory

We want to know: if we’ve been to state s, and action a has led to some distribution of results.. then what
does probability theory tell us about what we expect?

2.1 Characterizing a random variable

Moments

A random variable x has moments:

E[xn] =
∫

p(x)xndx

We can write this very compactly by refering to the generating function. Generating function:

{f }(k) , E[ekx]

= E[
∑

((knxn)/n!)]

=
∑

((kn/n!)E[xn])

We can ”generate” moments from the generating function by differentiating.

∂/∂ xn[{f }(x)]k=0 = E[xn] =
∫

p(x)xndx

This can be signifigantly easier than differentiating

Example: Bernoulli distribution

x ∈ {0,1}

{1-µ if x=0

px = {
{µ if x=1

{f }(k) = E[ekx]

= (1-µ) + µ ek

Example: Gaussian

p(x) = 1/root(sπσ2) * e-(x-µ)
2

/2σ2

µ = E[x]

σ2 = E[x2] - E[x]2

{f }(k) = E[ekx]

2.2 KL Distance

A measure of distance between two probability distributions. (KL divergence?)

Continuous:

KL(p,q) ,
∫

dx p(x)ln(p(x)/q(x))

Discrete:

KL(p,q) ,
∑

p(x)ln(p(x)/q(x))

KL divergence is always non-negative.
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Using the following lower bound on ln:

ln(z) ≥ 1-1/z

we can show that KL divergence is non-negative:

KL(p,q) ≥
∑

p(x)(1-(q(x)/p(x))

=
∑

(p(x)-q(x))

=
∑

p(x) -
∑

q(x)

= 0

KL divergence is asymmetric:

KL(p,q) 6= KL(q,p)

Sefine step function:

{ 1 if z≥ 0
θ(z) = {

{ 0 if z<0

Upper bound:

θ(z) ≤ ekz for all k>0

”Independantly identically distributed” = IID

Let x1, . . ., xn be IID with mean µ=E[x]

2.3 Central Limit Theorem (CLT)

• Large deviation theorem characterizes the tails of the distributions.
• What about the center of the distribution?

Let x1, x2, . . ., xn be IID, with a mean µ=E[x] and a varaiance σ
2=E[x2]-E[x]2. Variance is bounded (σ2<∞).

Let:

y , 1/sqrt(n)
∑

(xi-µ)

Then the distribution of this sum converges to a gaussian in the limit that n becomes very large:

limn→∞ p(y) = 1/sqrt(sπσ2) e-y
2/2σ2

Note: convergence is rapid for the center of the distribution, but actually fairly slow for the tails.
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Wednesday, January 16, 2002

2.4 Rollout

Value iteration and policy iteration are special cases of rollout:

V{ˆ}t+1(s) ← R(s, π{ˆ}t(s)) +

γ
∑

P(s’|s, π{ˆ}t, 1)R(s’, π{ˆ}t(s’)) +

γ2
∑

P(s’|s, π{ˆ}t, 2)R(s’, π{ˆ}t(s’)) +

. . . +

γk
∑

P(s’|s, π{ˆ}t, k)R(s’, π{ˆ}t(s’)) +

3 The learning problem

What if we only have the ability to sample the environment?

• not given the P(·|s,a) or R(s,a)

→ find them by sampling. how to sample?

M = generic name for a markov decision process (MVP)

M = 〈 S, A, P(·|s,a) R(s,a)〉

All of these assume full observability (we always know what state we’re in) Also, we know S and A.

3.1 Generative models (aka simulators)

[ ] → S’ distributed as P(·|s,a)
(s,a) → [ GM ]

[ ] → R = R(s,a)

Strong model of information access: we can sample any place in the markov model. Queries don’t interact
(don’t have to worry about the ”risk” of taking an unreversable action).

Simple strategy: just sample each (s,a) enough to estimate the parameters.

Surprisingly, this is often available

• e.g., in a simulation, we can re-run the same situation repeatedly. (e.g., computer backgammon: we
can always play one move from any board configuration, and see what happens).

Reasonable goal for the generative model: find the optimal policy

Policy evaluation with generative models

• One approach: sample extensively, then use planning approach
• Better approaches?

Given policy π, learn Vπ(s)

VΠ(s) = R(s,π(s)) + γ(
∑

s’P(s’|s,Π(s’))V
Π(s))

VΠ(s) = R(s,π(s)) + γ(
∑

s’P(s’|s,Π(s’),1)R(s,π(s))
+ γ2(

∑

s’’P(s’’|s,Π(s’’),2))V
π(s’’)

This isn’t too useful for planning (we can just use the simple equation); but for learning, we have easier
access to these equations.

Define τ to be an infinite sequence of 〈 s,r〉 values (a trajectory throught the markov model) produced by
the policy
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τ = 〈 s0, r0〉 → 〈 s1, r1〉 → 〈 s2,r2〉 → . . .

Monte carlo algorithm: sample s/r. . .

TD(K) = Temporal difference

• K = horizon
• α = learning rate

Alternative algorithm to find Vπ{ˆ} (estimate of Vπ)

Vπ{ˆ}t+1(s0) ← (1-α)Vπ{ˆ}t(s0) +

α [r0 + γ r1 + . . . + γk-1rk-1 + γk Vπ{ˆ}t(sk)

Usually, we just set α=1/t

• this transforms things into a running average

”bais-variance” tradeoff for k:

• if k is large, we get error from increased randomness (sampling larger groups of random variables)
• if k is small, Vπ{ˆ} gives us error from bias

3.2 Episodic learning (reset-to-start)

reset

↘↙ ↖
S↘ [ ] → S’ distributed as P(·|s,a)

a → [ GM ]

[ ] → R = R(s,a)

Designated start state.

We can always reset to the start state; but we can’t reset to just any state..

Some parts of the state space may be arbitrarily difficult to get to. (We may not care about those areas;
they don’t affect optimal actions from other states)

(This can be generalized to a distribution of start states)

Now we have to worry about consequences, but we don’t have an exploration/exploitation tradeoff.

3.3 Full learning (No-reset model)

No reset at all.

↙ ↖
S↘ [ ] → S’ distributed as P(·|s,a)

[ GM ]

a → [ ] → R = R(s,a)

Exploration/exploitation tradeoff

What is reasonable to expect from the learning algorithm?
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Wednesday, January 23, 2002

4 TD(k) and Policy Evaluation

4.1 Policy Evaluation

• Policy evaluation-planning → linear equations in Vπ, so we can just solve for it.
• Phased TD(k) algorithm → in the case of planning, we might as well stick with k=1; but for run-time
learning, we may want to use phased TD(k) with k>1.. (assume generative model: we can reset to
any state)

V{ˆ}πt+1(s) ← 1/n
∑

i=1
n [r0

i + γ r1
i + . . . + γk-1rk-1

i +

γkV{ˆ}pit(s
i
k)]

Here, the ”i”s are superscripts in r0
i, etc.

Bias-variance tradeoff:

• if we trust V more, use smaller k: minimize error from variance of markov process.
• if we trust V less, use larger k: minimize error from bias of V

As long as k<∞, we’ll never actually converge..

Q: why not just use k=∞, do it once, and ignore V? Because we might have a good a priori estimate of V
(e.g., if we’re doing policy iteration, then presumably V doesn’t change that much between iterations).

Vπ(s) = E[r0 + γ r1 + . . . + γkVπ(sk)]

Vπ(s) = E[r0] + γ E[r1] + . . . + γkE[Vπ(sk)]

The samples we are considering are rt
i:

r0
1 + γ r1

1 + . . . + γkVπ(sk
1)

r0
2 + γ r1

2 + . . . + γkVπ(sk
2)

Basically, we’re averaging each of these columns. One potential problem: the colums don’t represent in-
dependant random variables: if we reached an ulikely set of states at t=1, then we probably reached an
unlikely set of states at t=2.

We will show uniform convergance: despite the dependancies, we’ll get a good estimate.

We’ll consider a single column.. In particular, the set of rewards ri we get on a given time step in trial i of
walking the mdp.

Lemma 1

Let r1, r2, r3, . . ., rn ∈ [0,1] iid random variables drawn according to some distribution. E[ri] = µ. Then:

P[|1/n
∑

[ri]-µ| ≥ ε] ≤ e-ε
2n/3

(this is a ”large deviation bound”)

I.e., the probability that the sampled mean is off from the true mean by more than ε is e-ε
2n/3.

So we want n=C/ε2.

Lemma 2

But the thing we really want to bound is:

P[|1/n
∑

[rj
i] - E[rj]| ≥ ε for any j]
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How do we do this? (Esp since they’re not independant). Well, to be conservative, we know the ”union
bound”:

P(a∨ b) ≤ P(a)+P(b)

So now we’ve bounded the probability of each.. so we can immediately say:

P[|1/n
∑

[rj
i] - E[rj]| ≥ ε for any j] ≤ ke-ε

2n/3

≤ elog(k)-ε
2n/3

Entropy vs energy interpretation: interpret ”ε2n/3” as energy term, ”log(k)” as entropy term..

Introduce a confidence parameter ∂ (upper bound on ”failure probability”):

∂ ≥ ke-ε
2n/3

ε = sqrt(3log(k/∂)/n)

So with probability ≥ (1-∂) over phase t data, all the reward averages are simultaneously within this ε of
their expectation.

Error bound on policy evaluation

Define:

∆t , maxs{|V{ˆ}
π
t(s) - Vπ(s)|}

Then with probability ≥ 1-∂:

∂t+1 ≥ ((1-γk)/(1-gamma)) * ε + γk
∆t

∂t+1 ≥ ((1-γk)/(1-gamma)) * sqrt(3*log(k/e)/n) + γk
∆t

This comes from:

(1-γk)/(1-gamma) = 1 + γ + γ2 + . . . + γk-1

The ”variance” part is:

((1-γk)/(1-gamma)) * sqrt(3*log(k/e)/n)

The ”bias” part is:

γk
∆t

When k is very large:

∆t+1 ≤ sqrt(3*log(k/∂)/n)/(1-∂)

When k=1:

∆t+1 ≤ sqrt(3*log(1/∂)/n) + γ∆t

We can then use the union bound over iteration phases, to limit our overall error. Then we can solve ∆t..

∆t ≤ ε(1-γ(kt))/(1γ) + γkt
∆0

∆t ≤ ε(1-γ(kt))/(1γ) + γkt/(1-γ)

As t->∞:
∆t ≤ ε(1/1-γ)

∆t ≤ (1/1-γ)*sqrt(3*log(k/∂)/n)

So our asymptotic error is nonzero. The residual asymptotic error is:

∆t ≤ (1/1-γ)*sqrt(3*log(k/∂)/n)

So smaller k gives smaller residual error.

But the convergence is really controlled by the γkt term, so the larger k is, the faster we’ll converge.

So decrease k as we go?

The algorithm ”TD(λ)” has a continuous paramater λ (instead of k) that basically allows you to do a
weighted average the resut of using k=1, k=2, . . .. The extremes (0,1) correspond to k=1 and k=∞.
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5 Learning Optimal Policies

5.1 Q-Learning

Value iteration:
Q*(s,a) = R(s,a) + γ

∑

s’P(s’|s,a)V
*(s’)

= R(s,a) + γ
∑

s’P(s’|s,a)maxb{Q
*(s’,b)}

Use this formulation to produce a learning algorithm, q-learning: if we experience the transition [s{–}a/r→
s’] (s to s’ with action a and reward r):

Q{ˆ}t+1(s,a) ←(1-α)Q{ˆ}(s,a) +

α[r+γ maxbQ(s’,b)]

How much data do we need for this estimate to converge to Q*? (as a funciton of the number of states in
the environment)
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Monday, February 4, 2002

6 Overview

Where we’re going..

• We need compact representations to encode a complex world
– mdp isn’t compact enough – exponential blowup of independant inputs.
– how can we discover structure in the world?
– clusters (e.g., all states such that f(s) is true)
– embedding (compression?)
– factorization: what is independant?
– use probablistic models to learn structure
– bayes nets
– aka probablistic graphical models
– provide a unified framework for encoding structure
∗ introduce examples over the next few weeks; then show the general framework that they fit
in.

this week:

• predictions based on conditional probabilities
• conditional probabilities (CPs) for (few) discrete random variables can be tabulated
• consider continuous random variables (we can’t tabulate). conditional probabilities must be parama-
terized. natural parametric forms?

• simplest examples: linear & logistic regression

outline for this week:

• linear programming
• matlab
• logistic regression
• gradient ascent
• newton’s method

7 Linear Regression

Predictions based on continuous variables.

Goal: predict a continuous output y∈R from one or more inputs X=(x1,x2,. . .,xn)∈R
d.

[y] output

↗ ↗ ↑ ↖
[x1] [x2] [x3] . . . [xn] inputs

Model this input/output by a noisy linear map. I.e., our model of predicting y is:

• y =
∑

i wixi + noise

Abbreviate sum as inner product:

• y = W· X

7.1 Noise

Model noise by a conditional gaussian distribution.
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• P(y|X) = 1/sqrt(2π) e-1/2(y-W· X)2

• E(y|X) = W· X

Can we use this model to learn to predict the future from the past?

If examples are iid from the joint distribution p(X,y), then what is the probability of the data we saw under
this model?

• P(y1,y2,. . .,yn|X1,X2,. . .,Xn)

Since we’re assuming examples are iid, we can reduce this to:

• P(y1|X1)P(y2|X2). . . P(yn|Xn)

Learning problem: estimate the parameters of the distribution (=W)

Maximize the likelihood:

argmax[W] P(y1,y2,. . .,yn|X1,X2,. . .,Xn)

to make it easier, maximize the log likelihood:

argmax[W]
∑

log P(y1|X1)
= argmax[W] -

∑

[1/2 log(2π) + 1/2(y-W· Xn)
2]

= argmax[W] -
∑

1/2(y-W· Xn)
2

= argmax[W] -
∑

(y-W· Xn)
2

So it’s the same as minimizing the sum of squared error

7.2 How do we maximize a function of several variables?

To find a maximum, use the gradient, and set gradient=0. L(w) = likelihood

L(w) = -
∑

[1/2 log(2π) + 1/2(y-W· Xn)
2]

∂ L/∂ wα = -
∑

(y-W· Xn)(-xα n)

So for all α, we should have:

∂ L/∂ wα = 0

This yields a tractable set of linear equations, that we can explicitly solve.

∂ L/∂ wα =
∑

(yxα n-W· Xnxα n) = 0
∑

yxα n -
∑

W· Xnxα n = 0
∑

yxα n =
∑

W· Xnxα n
∑

yxα n =
∑

n(
∑

β wβ xβ n)xα n
∑

yxα n =
∑

β(
∑

n xα nxβ n)wβ

d equations, d unknowns. use matrix inversion to solve.

outer product

define outer product of d-dimensional vectors:

[UVT]αβ = uα vβ

outer product is a dxd square matrix, where elemnt (i,j) is uivj.

getting back to our gradient ascent. . .

Vector notation for solution:

[
∑

n xnxn
T]W =

∑

m ymxm
W = [

∑

n xnxn
T]-1(

∑

m ymxm)

Set:
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A = [
∑

n xnxn
T]-1

B =
∑

m ymxm

When do we have trouble inverting the matrix?

• if we have more inputs than examples
• if the examples all lie in a smaller dimentional space

Options when we can’t invert:

• minimum norm: min{|w|2} such that ∂ L/∂ W = 0
• weight decay: max{L(W)-C|W2|

8 Logistic Regression

How can we predict a binary output y∈{0,1} from X=(x1,x2,. . .,xn)∈R
d?

[y] output

↗ ↗ ↑ ↖
[x1] [x2] [x3] . . . [xn] inputs

Model input-output by a conditional Bernoulli distribution:

P(y=1|X) = σ(W· X)

Where we define σ(·) as:

σ(z) = 1/(1+e-z)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-10 -5  0  5  10

1/(1+exp(-x))

Properties of σ(·):

• σ(z)→ 1 as z→∞
• σ(z)→-1 as z→-

∞

• σ(-z) = 1-σ(z)
• ∂/∂ z σ(z) = σ(z)σ(-z)

8.1 Learning from examples

Assume iid examples yn∈{0,1}

P(y1, y2, . . ., yn|X1,X2,. . .,Xn) =
∏

p(yn|Xn)

Estimate parameters W by maximizing the log likelihood

argmax[W]
∑

log P(y1|X1)
= argmax[W]

∑

[ log ynlog[σ(W· Xn)] + (1-yn)log[1-σ(W· Xn)] ]

= argmax[W]
∑

[ log ynlog[σ(W· Xn)] + (1-yn)log[σ(-W· Xn)] ]

This is a nonlinear function, whose maximum can’t be computed in closed form. So we can’t just set the
gradient to zero and solve. Use iterative algorithms.
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Wednesday, February 6, 2002

Consider: continuous state sequence. problem: predict our next state.

Gradient ascent:
W ← W + η∂ L/∂ W

W ← W - 1/(∂2L/∂ W∂ WT) ∂ L/∂ W

15



Monday, February 11, 2002

9 pset 1

pset1 outside moore 554. µ=30/50

10 Review

2 types of optimization problems:

• linear
• nonlinear
• convex: has more structure than generic nonlinear; but more complex than linear.

Types of solutions:

• exact (clsoed form)
• iterative

Types of convergence:

• finite (polynomial) time
• asymptotic
• monotonic: each iteration improves the answer

11 Convex Sets and Functions

11.1 Introduce convex sets & functions in 1d.

Convex Set

• A set Ω ∈ R is convex if ∀ x,y∈Ω:
– (1-t)x + ty ∈ Ω for t∈[0,1]
– i.e., a set is convex if we can pick 2 points, and any point

between them is in the set.

Convex Function

• For any line we can draw between 2 points on the function, the function lies below that line.
• A function f(x) is convex on Ω if for all points x,y∈Ω:

– f((1-t)x + ty) ≤ (1-t)f(x) + tf(y) for t∈[0,1]
– Note:
– (1-t)f(x) + tf(y) for t∈[0,1] is the line between 2 points.
– f((1-t)x + ty) is the function value between 2 points.

Some convex functions:

• x2

• ex

f(x) is concave if (-f(x)) is convex. Some concave functions:

• log(x)
• sqrt(x)
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Local Minima are Global minima

Theorem: If f(x) is convex on Ω, then:

• Any local minimum is a global minumum.
• (of course, any global minimum is a local minimum.)

Proof by contradiction:

• let x* be a local minimum of f
• assume ∃ y s.t. f(y)<f(x*)
• let t ∈ [0,1]
• Then by convexity: f((1-t)x*-ty) ≤ (1-t)f(x*)+tf(y)
• Then since we’re taking a linear combination of f(x*) and something smaller: f((1-t)x*-ty) ≤ f(x*)
• But then x* can’t be a local minimum (consider limit as t→ 0).

Convex Functions and Tangents

Theorem: if f(x) is once differentiable, then it is convex on Ω iff:

• f(y) ≥ f(x) + f’(x)(y-x)

Intuition: f(x)+f’(x)(y-x) is the tangent. So what we’re saying is that the tangent of any point lies below or
at the function at every point..

Proof (⇒):

• for t∈[0,1]: f((1-t)x+ty) ≤ (1-t)f(x)+tf(y)
• so f(1-t)x+ty)-f(x) ≤ t[f(y)-f(x)]
• so (1/t)[f(1-t)x+ty)-f(x)] ≤ ≤ f(y)-f(x)
• lhs as t→ 0 is the definition of derivative. so take lim t→ 0
• f’(x)(y-x) ≤ f(y)-f(x)

Proof (⇐):

• Let x1,x2∈Ω. Let x=(1-t)x1+tx2. So x∈[x1,x2].
• By assumption: (Eq. A) f(x1) ≥ f(x) + (x1-x)f’(x)
• By assumption: (Eq. B) f(x2) ≥ f(x) + (x2-x)f’(x)
• Take linear combination of (Eq. A) and (Eq. B):

– (1-t)f(x1) + tf(x2) ≥ [(1-t)+t]f(x) + [(1-t)(x1-x)+t(x2-x)]f’(x)
– (1-t)f(x1) + tf(x2) ≥ f(x) + [(1-t)x1+tx2 - (1-t)x-tx]f’(x)
– By our definition of x:
– (1-t)f(x1) + tf(x2) ≥ f(x)
– (1-t)f(x1) + tf(x2) ≥ f((1-t)x1+tx2)

Convexity By Nonnegative Second Derivative

Theorem: if f(x) is twice differentiable, then it is convex on Ω iff:

• f”(x) ≥ 0 ∀ x∈Ω

Proof intuition:

• Use a taylor expansion
• Take the following to be true, on faith: ∀ x,y ∃ z∈[x,y] s.t.

– f(y) = f(x) + f’(x)(y-x) + (1/2)f”(z)(y-x)2

– Then f”(z)≥ 0 implies convexity..
– f(y) ≥ f(x) + f’(x)(y-x)

17



Examples:

• d2/dx2 ex = ex ≥ 0
• d2/dx2 x2 = 2 > 0
• d2/dx2 -log x= 1/x2 ≥ 0
• d2/dx2 -ln σ(z) = -σ(z)σ(z) ≥ 0

Jensen’s inequaltiy

Theorem: let f(x) be a convex function of a random variable x∈R.

• E[f(x)] =
∫

dx p(x)f(x)

or:

• E[f(x)] =
∑

i p(xi)f(xi)

Note: x can be defined over discrete set, even though f must be defined on a continuous set.

Then:

• E[f(x)] ≥ f(E[x])

Proof (assuming f(x) is once differentiable):

• E[f(x)] ≥ E[f(z)+(x-z)f’(z)] ∀ z
• E[f(x)] ≥ f(z) + (E[x]-z)f’(z)
• Take z = E[x] (z∈Ω)
• E[f(x)] ≥ f(E[x])

Examples:

• E[x2] ≥ E[x]2

• E[exk] ≥ ekE[x]
2

• E[log(x)] ≤ log E[x]

11.2 Convex Dualtiy

Motivation: if f(x) is convex, and we choose some slope λ for a line, then where will it intercept f(x) such
that it touches but is below.. I.e., find the ”intercept function” -g(λ) such that:

• f(x) ≥ λ x-g(λ)

Ideally, we’d like a tight bound.. :)

A convex function f(x) can be represented in terms of a ”conjugate” (or ”dual”) function g(λ):

• f(x) = maxλ{λ x-g(λ)}

The dual function (which is also convex) is given by:

• g(λ) = maxx{λ x-f(x)}

These are ”Legendre transformations”

Example:

• f(x) = ex

• g(λ) = λ logλ-λ

Which means that:

18



• ex ≥ λ x + λ - λ logλ

Example:

• f(x) = log(x)
• g(x) = 1 - log(1/λ) = 1+log(λ)

Which means that:

• f(x) ≤ λ x - 1 - logλ

11.3 Higher Dimentions

Convex Sets

• If you pick any 2 points, then everything between them must be included.

Conditions

d=1 d>1

--------------------

x∈R x∈R
d

f’(x) df/dX or ∇ f(x)

f’’(x)≥ 0 (see below)

duals f(x) ≥ Λ X - g(Λ) X∈R
d

below:

• For all V ∈ R
d:

– VT ∂2f/dXdXT V → 0

19



Monday, February 18, 2002

12 Review... Monotonic Convergence

12.1 Auxilliary function

Given a (log) likelihood function L (concave) that we wish to maximize, define an auxilliary function Q(w,wt)
continuous in w and wt s.t.: - L(w) = Q(w,w) - L(w) ≥ Q(w,wt)

Pick Q such that it’s easy to maximize. Then by maximizing Q around wt, we can find a new w that’s better
than the old one.

wt+1 = argmaxw Q(w,wt)

12.2 Logistic Regression

L(w) = L+(w) - L-(w)

L+(w) =
∑

n(w· xn) yn
L-(w) =

∑

nlog[1+exp(w· xn)]

12.3 Multiplicitive Updates:

[(dL+/dwα)] η

exp ←− exp(wα) [---------]

[(dL-/dwα)]

Where:

η = maxn
∑

α xα n

(Assumes xα n≥ 0)

i.e., the learning rate is set by looking at the ”densest” image. E.g., for an image (where brighter pixels have
higher values), the brightest image sets the larning rate.

This update rule converges monotonically.

12.4 Auxilliary Function

So what auxilliary function do we want to use?

Q(w,wt) = L(wt) +
∑

α n{yn(wα-wα t) -

(1/S)σn
(t)[exp(s(w-wα t))-1]

Where:

σn
(t) ≡ 1/(1+exp(-wt· xn))

∂/∂ w Q(w,wt) = 0
∑

n xα n [yn-σn
(t) exp(s(wα-wα t))]

exp(s(wα-wα t)(
∑

nσn
(t)xα n =

∑

nxα nyn

We’re only computing the gradient (not the hessian), so it’s cheaper than other methods (in high dimen-
sionality).

12.5 Constraints

• algorithm is tailored to sparse nonnegative input
– nonnegativity is required: otherwise derivitives give complex numbers, etc.
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– sparsity is desirable: the densest vector limits our learning rate.
– but: for negative data, we can just adjust..

13 State Aggregation

Conditional Probabilities for large discrete variables must be paramaterized. I.e., P(s’|s) is just too big to
write out in a tabular form.

Aggregate states into clusters, and work on the cluster level.

• Assume we have a discrete markov process
– markov process has a countable state space S.
– markov process has probablistic dynamics P(s’|s)
– What if |S| is very large?
– Difficult to elicit P(s’|s) from experts
– Difficult to learn from examples (many parameters)
– Why build a model at all?
– Transfer: if we slightly change the task, models are very useful.

Transform original state space S into an aggregate state space.

• Imagine that states s∈ S can be mapped to clusters c∈ C and vice versa:
– P(c|s) = probability that state s is mapped to cluster c
– P(s’|c) = prob that a state s in cluster c is followed by state s’.

So we could use an alternate notation like:

• P(ct|st) = prob that state st is mapped to cluster ct
• P(st+1|ct) = prob that state st is followed by st+1, given that state st maps to cluster ct.

(but we won’t :) )

State transitions s→ c→ s’ are mediated by cluster assignments. Thus:

• P(s’|s) =
∑

cP(c|s)P(s’|c)

So we’re clustering, but allowing probablistic fuzziness.

We are using a ”matrix factorization” to provide a compact representation:

• P(s’|s) is a |S|×|S| matrix (call it A)
• P(c|s) is a |S|×|C| matrix (call it B)
• P(s’|c) is a |C|×|S| matrix (call it C)

so we’re modelling A as:

• A = B × C

We’re adding some complexity cost: instead of table lookup, we have matrix multiplicaiton (an inner product
for a single entry).

Represent this model as a graph:

S → C → S’

(Each link characterized by a matrix, but we explictly do *not* have a link from S to S’)

This decomposition also gives us transitions between clusters..

• P(ct+1|ct) =
∑

sP(ct+1|s)P(s|ct)
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Inferring cluster labels:

P(c|s,s’) = P(s’,c|s)/P(s’|s)

P(s’|c)P(c|s)
= ---------------------

∑

c’P(s’|c’)P(c’|s)

So given P(c|s) and P(s’|c), we can compute:

• P(s’|s) (inner product)
• P(c|s,s’) (bayes rule)

13.1 Learning

so how do we learn?

Learning from ”complete” data

Suppose we have fully labeled trajectories of the form:

• s1→ c1→ s2→ c2→ s3→· · ·→ sT

What’s the probability of this trajectory under our model?

P({st,ct}t=1. . . T) =
∏

t P(st+1|ct)P(ct|st)

How many times does P(st+1=s|ct=c) appear? Define counts:

• N(s→ c) = \# of times state s is followed by cluster c
• N(c→ s) = \# of times cluster c is followed by state s

Use these counts to rewrite P({st,ct}):

P({st,ct}) =
∏

s

∏

c P(s|c)N(c→ s)P(c|s)N(s→ c)

We want to maximize the log likelihood of the data (LC=log likelihood for complete data):

LC =
∑

s

∑

c log(P(s|c))N(c→ s)+log(P(c|s))N(s→ c)

Then we just do learning by maximizing this log likelihood. In particular, we want to maximize LC subject
to the constraints:

∑

cP(c|s) = 1
∑

sP(s|c) = 1

Solution to the complete data form:

Maximum likelihood estimates:
P(c|s) = N(s→ c)/

∑

c’N(s→ c’)

P(s’|c) = N(c→ s’)/
∑

s’’N(c→ s’’)

Learning from ”incomplete” data

Suppose we just have partially labeled trajectories of the form:

• s1→ s2→ s3→· · ·→ sT

I.e., we have a hidden cluster space.. (this seems very similar to HMMs?)

What’s the probability of this trajectory under our model?

P({st}t=1. . . T) =
∏

t P(st+1|st)
=

∏

t

∑

ct P(st+1|ct)P(ct|st)
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Wednesday, February 20, 2002

14 Learning from Incomplete Data

We have ”partially” labeled trajectories

• s1→ s2→ s3→· · ·→ sT

What’s the probability of this trajectory under our model?

P({st}t=1. . . T) =
∏

t P(st+1|st)
=

∏

t

∑

ct P(st+1|ct)P(ct|st)

Let N(s→ s’) count the number of transitions from s to s’ in the data.

P(s1,s2,. . .,sT) =
∏

s,s’

∑

cP(s’|c)P(c|s)]
N(s→ s’)

Log likelihood (H for ”hidden”):

LH(s1,s2,. . .,sT) =
∑

s,s’ N(s→ s’)log
∑

c[P(s’|c)P(c|s)]

Then we just do learning by maximizing this log likelihood. In particular, we want to maximize LH subject
to the constraints:

∑

cP(c|s) = 1
∑

sP(s|c) = 1

We can’t solve this in closed form. So use an iterative solution. Use the EM algorithm

14.1 EM algorithm

Intuitive motivation:

• in the complete-data situation, to maximize the likelihood in the observed case, we normalized observed
counts N(s→ c) and N(c→ s’)

• to maximize log likelihood for the hidden-variable setting:
– compute inferred counts of clusters (E-step):
∗ Nhatk(s→ c) =

∑

s’N(s→ s’)Pk(c|s,s’)
∗ Nhatk(c→ s’) =

∑

sN(s→ s’)Pk(c|s,s’)
∗ where Pk is given by Bayes’ rule
∗ use Nhatk to find MLE for Pk+1
∗ Pk+1(c|s) = Nhatk(s→ c)/

∑

c’Nhatk(s→ c’)
∗ Pk+1(s|c) = Nhatk(c→ s)/

∑

s’Nhatk(c→ s’)

These updates give monotonic convergence..

These are multiplicitive updates.

∂ Lh
------- = αcs

∂ P(c|s)

∂ Lh
------- = βs’c

∂ P(s’|c)

The m-step updates can also be written as:
αcs

Pk+1(c|s) = Pk(c|s) ----------------
∑

cαcsPk(c’|s)

βsc

Pk+1(s|c) = Pk(s|c) ----------------
∑

cβs’cPk(s’|c)
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14.2 Proof of Monotonic Convergence

(I got bored)
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Monday, February 25, 2002

15 Vector Quantization

Assign an integer label to each vector (basically, we’re doing automatic clustering). Choose k centroids.
Assign each data point to the nearest centriod; re-estimate the centroids; repeat. For nicely clustered data,
this can give useful clusters.

K-means algorithm for data {Xn} (each Xn is a vector)

1. Choose µi at frandom for i=1,2,. . .,k (each µi is a vector)
2. Assign yn=argmini |xi-xn|

2

3. Set µi to the mean of {xn}yn=i
4. Go to step 2 (until convergence)

Questions:

• what type of data is algorithm suited to?
• what exactly is being optimized?
• why does it converge?
• what if there are missing features?

15.1 Clustering

Goal:

• divide data into clusters
• assign new data to clusters

15.2 Mixture Models

Vector quantization is a member of a probablistic set of models called ”mixture models.”

Goal

• model the distribution p(x) from which iid training examples are drawn. iid examples are {xn}.
• Generative model (intuition)

1. Roll a k-sided (non-fair) die, with probabilities ρi (i=1..k),
∑

iρi = 1
2. Based on the outcome of the die, sample x from one of k ”component distributions.”
3. Identify each component distribution with a cluster.

The overall pdf is a weighted sum of the individual distributions. If each component distribution is relatively
tight, and sparse, then we can find them..

Hidden variable

• In addition to x (observed variable), introduce a discrete hidden (unobserved, latent) variable z ∈ Z.
• z’s pdf is given by ρz (die probabilities).

Define a joint pdf P(x,z) = P(x|z)P(z)

So P(x) = sumz P(x|z)P(z)

”mixture model” terminology: we’re ”mixing” k different distributions.
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Graphical model

z → x

Component distributions

x is continuous, so we need a parametric form. A useful choise is the multivariate gaussian.

• basically, a guassian among multiple dimensions.

P(x|z=i) = 1/sqrt((2π)d|Σi|) exp{-1/2 (x-µi)
T
Σi

-1(x-µi)

Each component (cluster) i has its own mean and covariance:

µi = expected value of x (k-vector)

= E[x|z=i]
Σi = covariance matrix (k-by-k matrix)

= E[(x-µi)·(x-µi)|z=i]

note! Σ is covariance, not sum (=
∑

).

Covarinace matrix Σi must be positive definite (basically the equivalant to saying that a real number must
be positive). Other than that, it can have any value.

P(x|z=i) = 1/sqrt((2π)d|Σi|) exp{-1/2 (x-µi)
T
Σi

-1(x-µi)

|Σi| = determinant

Σi
-1 = matrix inverse..

Benefits:

• modelling assumptions are explicit
• know what data will be well-suited to the algorithm
• inferences of many different types are supported by the model.

– e.g., clustering/vector quantization.
– restoration of ”missing” features
– novelty/outlier detection
– learning – viewed as maximum likelihood estimation

15.3 Learning from labeled examples

Suppose we have labeled examples {xn, zn} where zn ∈ {1. . . k}

Define indicator variables:
{ 1 if zn = i

Zin = {
{ 0 otherwise

The probability of iid takes the following form:

P({xn,zn}) =
∏

n=1..NP(xn|zn)P(zn)
=

∏

n

∏

i {P(zn=i)P(xn|i)}
{Zin}

=
∏

n

∏

i {ρiP(xn|i)}
{Zin}

(Fill in P(xn|z=i) from big ugly equation above :) )

Work with log likelihood (for fully-observed case) LO:

LO =
∑

in Zinlog(ρi) - Zinlog(P(xn|i))
LO =

∑

in Zin[log(ρi) - 1/2(xn-µi)
T
Σi

-1(xn-µi)

-dlog(2π)/2 - log(|Σi|)/2]

Learning is maximizing LO with respect to {ρ, µ, Σ} subject to the constraints:

•
∑

iρi = 1
• Σi covariances are positive definite
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Solution

• Let Ni =
∑

nZin counts the number of examples labeled by the ith cluster.
• ρi = Ni/N
• µi = 1/Ni

∑

nZinxn
• Σi = 1/Ni

∑

n Zin(xn-µi)(xn-µi)
T

15.4 Learning from unlabeled examples

Suppose we have unlabeled examples xn.

P(x1,. . .,xn) =
∏

n

∑

zP(xn|z)P(z)

Work with log likelihood (for hidden-variable case) LH:

LH =
∑

n log [
∑

zP(xn|z)P(z)]
LH =

∑

n log [
∑

iP(xn|z=i)ρi]

(Again, substitute in P(xn|z=i) from above)

Learning is maximizing LH with respect to {ρ, µ, Σ} subject to the constraints:

•
∑

iρi = 1
• Σi covariances are positive definite

Can’t solve in closed form.

Solution: use EM

16 EM

Intuitive motivation.. 2 steps:

1. E-step:
• to maximize LO, we just used counts Ni of the data in each cluster.
• But we don’t have direct access to these counts, since the training samples are unlabeled.
• We can make guesses, though: try to find a value for Ni that will make LH higher than our current
estimate, even if it doesn’t give the right value.

• Use Bayes rule:
– P(z|xn) = P(xn|z)P(z)/p(xn)
– P(z|xn) = P(xn|z)P(z)/(

∑

zP(xn|z)P(z))
– P(z=i|xn) = P(xn|z=i)ρi/(

∑

iP(xn|z=i)ρi)
– Define a surrogate for the real labels:
– γin ≡ P(z=1|xn)
– Fill this in with our definitions for P(xn|z=i)
– Use the surrogate in place of the indicator variable Zin.
– Use γ to calculate Nhat.
– M-step
– Use Nhat and the equations from the fully-observed case to
update the parameters:
– ρi = Nhati/Nhat
– µi = 1/Nhati

∑

nγinxn
– Σi = 1/Nhati

∑

n γin(xn-µi)(xn-µi)
T

16.1 Proof of Monotonic Convergence

Let:
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H = hidden variable

V = visible variable

θ = current parameters

θ’ = updated parameters

For the mixture model with gaussians:

• H = {z}
• V = {x}
• θ = {ρ,µ,Σ}

But we’ll prove convergence for the general case.

L(θ’) =
∑

n log P(Vn|θ’)
L(θ’) =

∑

n log P(Hn,Vn|θ’)/P(Hn|Vn,θ’)

This is true for any values of Hn. In particular, we can construct L(θ’) as a weighted sum of values that
equal L(θ’). I.e., it is always true that:

∑

xZp(x) = Z

if Z doesn’t depend on x. In our case, Z=L(θ’). So we can use a weighted sum over the PDF for Hn.

L(θ’) =
∑

n

∑

Hn P(Hn|Vn,θ)[log P(Hn,Vn|θ’)/P(Hn|Vn,θ’)]
L(θ’) =

∑

n

∑

Hn P(Hn|Vn,θ)[log P(Hn,Vn|θ’)/P(Hn|Vn,θ) +

log P(P(Hn|Vn,θ)/P(Hn|Vn,θ’))]

We can interpret:

log P(P(Hn|Vn,θ)/P(Hn|Vn,θ’))

as the KL distance between distributions paramaterized by θ and θ’.

KL-distance is always positive: use it to generate an inequality.

L(θ’) ≥
∑

n

∑

Hn P(Hn|Vn,θ) log[P(Hn,Vn|θ’)/P(Hn|Vn,θ)]
Q(θ’,θ) ≡

∑

n

∑

Hn P(Hn|Vn,θ) log[P(Hn,Vn|θ’)/P(Hn|Vn,θ)]

• L(θ’) = Q(θ’,θ’)
• L(θ’) ≥ Q(θ’,θ)

It follows that L(θ) improves monotonically under:

• θ’ = argmaxθ’ Q(θ’,θ)
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Wednesday, February 27, 2002

17 Mixture Model

we need to solve for parameters

• ρi = P(z=i)
• µi, Σi = multivariate gaussian parameters

H = hidden variable

V = visible variable

θ = current parameters

θ’ = updated parameters

Find auxilliary function Q of the log likelihood:

Q(θ’,θ) ≡
∑

n

∑

Hn P(Hn|Vn,θ) log[P(Hn,Vn|θ’)/P(Hn|Vn,θ)]

Use iterative scaling:

θ’ = argmaxθ’’ Q(θ’’, θ)

17.1 EM

E step

Compute the term in Q(θ’,θ) that depends on θ’

Q(θ’,θ) ≡
∑

n

∑

Hn P(Hn|Vn,θ) log[P(Hn,Vn|θ’)] + . . .

(We don’t care about the second term, since it doesn’t depend on θ’. So, it won’t affect our argmax!)

We can rewrite this as a posterior expectation of the log joint distribution:

Q(θ’,θ) =
∑

n E[log P(Hn,Vn|θ’) | Vn,θ]

(Thus the name E-step for ”expectation”)

For the mixture model:
∏

n P(xn,zn) =
∏

n

∏

i {ρiP(xn|i)}
{Zin}

where:
{ 1 if zn = i

Zin = {
{ 0 otherwise

Note that in this context, Zin are random variables (since the labels zn are random variables). But they have
very simple expected values:

E[Zin] = P(zn=i)

E[Zin|xn] = P(zn=i|xn) = γin
∑

n E[log P(Hn,Vn|θ’) | Vn,θ]
= E[

∑

n zin (log ρi’ - 1/2(xn-µi’)
T
Σi’(xn-µi’)-

1/2log(2π)d |Σi’|
|xn,θ]

=
∑

ni γin (log ρi’ - 1/2(xn-µi’)
T
Σi’(xn-µi’)-

1/2log(2π)d |Σi’|
|xn,θ]

γin = P(zn=i) = P(xn,zn=i)/P(xn)

(compute with θ, not θ’)
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18 Union Model

Consider a binary event z ∈ {0,1} that is triggered by one or more precursor events yi ∈ {0,1} (n.b.: strong
notion of causality):

z =
⋃

i yi

This is one possible model of ”sensor fusion”. Sensors are noisy.

Examples

• Security: an alarm is sounded when you detect one or more intrusions. But there might be false alarms,
wind, etc.

• Vision: an object is spotted if it appears in any subregion of the viewing area.
• Speech: to detect if someone is speaking, break signal into freqs, and see if we detect speech at any
freq.

to:, cc:, attchmnt:, subject:
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Monday, March 4, 2002

[z [y1 x1 x2 ... xk] [y2 x1 x2 ... xk] ... [yn x1 x2 ... xk] ]

18.1 Sensor model

P(yi=1|x-i) = σ(wi· xi)

If any sensor fires (y=1), then the output (z) is 1.

P(z=1|y) = 1-
∏

i(1-yi)

Take probability that sensors didn’t fire; take product of that to get probability that no sensors fired; one
minus that is the probability that any sensor fired.. P(z=1|{xi}) = 1-

∏

iσ(-wi· xi)

18.2 Interference

Given that we know something about z, what inferences can we make about the y’s and x’s? (x’s fixed)

If z didn’t fire, then we know that all yi’s didn’t fire.

E[yi|z=0] = P(yi=1|z=0) = 0 for all i

If we learn that z fired, then it can only increases our confidence that each of the yi’s fired:

E[yi|z=1,{xj}] = P(yi=1|z=1,{x})
≥ P(yi=1|{x})
= E[yi|xi]

Proof:

P(yi=1|z=1,{x}) = P(yi=1, z=1|{x})/P(z=1|{x})

Because of our model, z is independant of the x’s, given the y’s.

P(yi=1|z=1,{x}) = P(yi=1|{x})P(z=1|yi=1)/P(z=1|{x})

We know that P(z=1|yi=1)=1 so:

P(yi=1|z=1,{x}) = P(yi=1|{x})/P(z=1|{x})
P(yi=1|z=1,{x}) = σ(wi· xi)/[1-

∏

iσ(-wi· xi)]

Denominator is always less than one:

P(yi=1|z=1,{x}) ≥ σ(wi· xi) = P(yi=1|{x})

18.3 Learning

Can we use a global learning algorithm, without combinatorial explosion of training time? Use EM..

Incomplete Data scenario

Assume we have a set of partially labelled examples {〈 xin,zin〉} (n indexes over examples). E.g., for visual
id, we are told which images contain the target, but not where in the image.

[Footnote: If the xin are actually different instances of the same object, then this type of scenario is called
”multiple instance learning.” In reality, this is just a special case of sensor fusion..?]

Maximize log likelihood:

L =
∑

n log P(zn|x1n, x2n, . . ., xkn)
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Break into positive and negative examples:

L =
∑

n zn log P(zn=1|x1n, x2n, . . ., xkn) +

(1-zn) log P(zn=0|x1n, x2n, . . ., xkn)

L = zn log[1-
∏

iσ(-wi· xi)] + (1-zn) log [
∏

iσ(-wi· xi)]
L = zn log[1-

∏

iσ(-wi· xi)] + (1-zn)
∑

i log σ(-wi· xi)

Highly nonlinear: use an iterative algorithm.

18.4 EM

• EM is an iterative algorithm for optimizing the (global) log likelihood.
• But, at each iteration, it decouples different sensors.

E step

θ = {wi}
θ’ = {wi’}
∑

n E[log P(y,z|{xin},θ’) | zn,θ]

γin = E[yi|zn,{xjn},θ] =

P(yi=1|zn,{xin},θ) =

zn σ(wi· xi)/(1-
∏

iσ(-wi· xi))

19 Markov Models

• Random variable st ∈ {1,2,. . .,n} = state at time t.
• Markov assumption about dynamics (”k-th order markov model”):

– P(st|s1, s2, . . ., st-1) = P(st|st-k, . . ., st-1)

Strengths..

• simple to compute P(sequence)
• simple to estimate model parameters from data

Weaknesses

• to model kth order correlations, we need to store nk parameters
• in the real world, we don’t have direct access to state variable

– ”partially observable worlds”

20 Hidden Markov Models

P(s,o) = P(s1)
∏

P(st|st-1)
∏

P(ot|st)

Graphical model:

[S1 O1 [S2 O2 [S3 O3 [... [St Ot]]]]]

Example: speech recognizer for the word ”cat”

• state = phoneme
• observation = cat
• states = [silence, c, a, t, silence]

20.1 Parameters

Initial state probabilities:
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πi = P(s1=i)

Transition probabilities:

aij = P(st+1=j|st=i)

Emission probabilities:

bik = bi(k) = P(ot=k|st=i)

20.2 Computing the likelihood

Use decoder lattuces and forward and backward and viterbi etc.. [I’ve done this enough times that I don’t
want to write notes for it again.. See manning & schutze for a good explanation.]
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Wednesday, March 20, 2002

21 Bayes Nets

Two-component model. Qualitative component is a DAG: it defines independence properties. Quantitative
component is a ”conditional probability table” which lists the probability of a variable for each combination
of values of its *parents* in the DAG.

Bayes net = G + CPT. G is a DAG. CPT is a conditional probability table.

Generally, the DAG represents causality. More formally, it represents info about conditional independence..

21.1 Semantics

Always:

P(X1,. . .,Xn) =
∏

i P(Xi|x1. . . Xi-1)

Special: (*)

P(X1,. . .,Xn) =
∏

i P(Xi|pa(Xi))

Where pa(Xi) are the parents of Xi in G.

Definition:

• ∀ G ∀ P, G ”represents” P if P obeys factorization (*) given by G.
• ”General” independence conditions specified by G?

21.2 Example:

B = burglary A = arlarm E = earthquake J = john M = mary

Graph:

B→ A; E→ A

A→ J; A→ M

CPT:
B E | P(A=1)
------------

0 0 | . . .

0 1 | . . .

1 0 | . . .

1 1 | . . .

21.3 ”Explaining away” and nonmonotonicity

There’s some marginal probability of burglary:

P(B=1) small

Now suppose that we observe the event that the alarm went off

P(B=1|A=1) large

Now suppose that we additionally observe the event that there was an earthquake:

P(B=1|A=1,E=1) small

This last step, where P(B=1|. . .) gets small again, is known as ”explaining away.” We have a probabalistic
explanation for the alarm, and as a result, P(B=1|. . .) gets small again.
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This is a useful property – gracefully incorperates the fact that our beliefs can be revised on the basis of
increasing evidence.

21.4 Causality

choose direction of DAG to match causality. This tends to give us more efficient representations. But we
can actually choose any ordering. All that the bayes net represents is info about correlations, not about
causality. When interpreting a bayes net graph, we have to be careful not to assume that it really asserts
causality..

21.5 Conditional independences

• node value is conditionally dependant, given parents, of all other nodes.

Let X and Y be variables. S is a set of observed values.

S = {J=1, M=0}

When can we assert that X and Y are independant, given S? If there’s no (undirected) path from X→ Y
that doesn’t go through S.

Blocking

X{–}· · ·→ Z →· · ·{–}Y

A path p btwn X and Y is ”blocked” by S if there is a single node Z∈ S on the path and edges along path
touching Z go in the *same* direction. Here, we’ve observed an ”intermediate cause”.

X{–}· · ·← Z →· · ·{–}Y

A path p btwn X and Y is ”blocked” by S if there is a single node Z∈ S on the path and edges along path
touching Z go away from Z. Here, we’ve observed a ”common cause”.

X{–}· · ·→ Z ←· · ·{–}Y
/\
/ \
/no S\
/ \

A path p btwn X and Y is ”blocked” by S if there is a single node Z/∈ S on the path, and edges along path
touching Z go towards Z, and no descendants of Z are in S.

Say X and Y are d-separated by S in G if every path from X to Y is blocked by S.

If X and Y are d-separated by S in G then X and Y are conditionally independant. If X and Y are not
d-separated by S in G then there exists some P represented by G s.t. X and Y are conditionally dependant.

22 Inference in Bayes Nets

Input:

Bayes net <G, CPTs>

Set S of observations (e.g., {J=1,M=0})
Variable X

Desired output:

P(X|S)

Goal:

• tractable: running time polynomial time of <G, CPT>
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• inference
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Monday, March 25, 2002

Hm. Assignment 6 is due today. Huh. Ok. :) I guess I’ll do that tonight..

PROJECTS!! :)

22.1 Polytrees

Definition: if a DAG is a polytree, then it contains no *undirected* cycles.

Today: efficient algorithm for inference in polytree Bayes nets

Definitions

Node Q, our query node, has parents and children.
. . . . . . . . .

U1 U2 U3
\ | /
Q

/ | \
V1 V2 V3
. . . . . . . . .

Where U’s parent’s & children may be observed; and V’s parents and children may be observed; and U’s
and V’s may be observed. Since it’s a polytree, U’s are not connected to V’s (except via Q). Furthermore,
U’s are not connected to each other and V’s are not connected to each other.

Definition:

• S = set of evidence nodes
• ∀ X,Y: S(X,Y) ⊆ S = set of evidence nodes reachable from X avoiding Y.

For example, the evidence in U1’s blob is S(U1,Q). The evidence in Vi’s blob is S(Vi,Q)..

Definitions:

• S+ =
⋃

i S(Ui,Q)
• S- =

⋃

i S(Vi,Q)

Algorithm

Use message passing to distribute information.

For every X→ Y:

1. X sends to Y: P(X=x,S(X,Y)) ∀ x

2. Y sends to X: P(S(Y,X)|X=x) ∀ x

X sends Y a message for each value of X, which gives the joint probability of the setting of x and the
probability of all evidence connected to X (but not connected to Y).

Y sends X a message for each value of X, which gives the conditoinal probability of the evidence connected
to Y (but not X), given the setting of X to the given value..

We still need to convince ourselves:

1. base case: leaf nodes can find message values
2. recursive case: non-leaf nodes can find message values
3. we can compute P(Q|S) given messages to Q.

Do #3 first (find P(Q=q|S)). First, reduce the conditional to a joint probability:
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P(Q=q|S) = P(Q=q,S)/P(S) = α P(Q=q,S)

Then find the joint probability:

P(Q=q,S) = P(Q=q,S+)P(S-|Q=q, S+)

Use d-separation (on Q, since for the right probability, Q is on the right hand side of the conditional – it’s
evidence (in this circumstance, at least)) (this is d-sep case 1):

P(S-|Q=q, S+) = P(S-|Q=q)

So:

P(Q=q,S) = P(Q=q,S+)P(S-|Q=q)

So we can find P(Q=q|S) if we can find:

P(Q=q,S+)

P(S-|Q=q)

For the first one:

P(Q=q,S+) =
∑

ubarP(Ubar=ubar,S
+)P(Q=q|Ubar=ubar,S+)

Because it’s a bayes net, we can reduce this to:

P(Q=q,S+) =
∑

ubarP(Ubar=ubar,S
+)P(Q=q|Ubar=ubar)

We can find P(Q=q|Ubar=ubar) in the CPTs.

By d-separation condition 3:

P(Ubar=ubar,S+) =
∏

i P(Ui=ui,S(Ui,X))

So:

P(Q=q,S+) =
∑

ubar(
∏

i P(Ui=ui,S(Ui,X)))P(Q=q|Ubar=ubar)

Get the left part from messages; and the right part from CPTs.
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Wednesday, March 27, 2002

Note: new tutorial materials are now on the web page.

Review:

• Bayes net = DAG+CPTs
• Represent *any* P(X1,. . .,Xn)
• Order of decomposition matters!
• d-separation: if X,Y d-sep by S ⇒ P(X,Y|S)=P(X|S)P(Y|S)
• Problem of inference: compute P(X|S)
• Polytree algorithm: linear run time

22.2 Non-Polytree

What happens if the underlying DAG is not a polytree?

Approach 1: make it a tree.

season -> sprinkler -> wet

season -> rain -> wet

wet -> slippery

Node merging:

• Combine sprinkler & rain into a single 4-value variable.
• Everything that happens within the node is done exhaustively
• Size of merged node table is exponential
• Works well if you have a few small loops; not good with big loopy networks.
• Exponential in the biggest merged node’s size

Cut-set conditioning:

• Create 2 new graphs, by fixing the value of a node in the cycle (e.g., season) to each possible value.
• Essentially ”removes” the node from the graph – eliminates cycle.
• Run polytree on new graphs (which are polytrees).
• Exponential in the cut-set size (number of nodes we ”removed”)

Approach 2: Get as far from a tree as you can

• Polytrees: each node has a ”small” number of ”strong” influences
• Alternative: large numbers of weak influences

Consider for simplicity a 2-layer bayes net. Variables:

u1 u2 ... un = U

x1 x2 . . . xm = X

We have full connectivity from each ui to each xj.

We can think of U as ”hidden causes” and X as ”observable effects”.

By d-separation on U’s:

P(X|U) =
∏

j P(xj|U)

Marginal independance of the u’s:

P(U) =
∏

i P(ui)

P(U|X) 6=
∏

iP(Ui|X)

Parametric representations..
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• Give a weight vector to each node
• Use weight vectors to give a compact representation of the CPTS: P(xi|U). Otherwise, these would be
exponential.

• Assume P(X=1|U) = σ(θ· U)

Think of the weights as being roughly uniform (e.g., within 2 orders of magnitude of each other)

• limits the influence of individual inputs.

This is a standard definition of a neural network!

Possible definitions for σ-esqe funcitons include:

• sigmoid σ = (1+exp(-z))-1

• noisy-or ⊕ = 1-e-z

(Assume each input bias pi=1/2, just for convenience – we can handle the general case)

P(xi=1,. . .,xm=1) = (1/2)
n
∑

U

∏

i⊕(U)
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Monday, April 1, 2002

σ(z) = 1-e-z

We don’t like 1-exponentials, so upper bound it with an exponential, depending on what part of the 1-exp
we’re looking at:

log(1-e-z) ≤ λ z-g(λ)

1-e-z ≤ eλ z-g(λ)

g(λ) = (λ+1)log(λ+1) - λ logλ
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Monday, April 8, 2002

23 Game Theory

23.1 Where does this fit?

Previous topics included:

• reinforcement learning: learning how to act in an uncertain environment
• unsupervised learning & bayesian networks: probablistic modeling and inference

Both were passive environments (”nature”).

Game theory is a reasonable starting point to look at problems of interaction.

23.2 Single-stage matrix games

• Players i=1, . . ., n (start with n=2)
• Each player has actions a1. . . ak (start with k=2, actions={0,1})
• Payoff matrices (1 per player): matrix Mi for player i that is indexed by the actions of the 2 players.

Mi(x1,x2) x1,x2∈{0,1}

Specifies the payoff to player i if player 1 plays x1 and player 2 plays x2.

• Moves are simultaneous

Example: Prisoner’s dilema (confess/deny)

M1 M2
x1=c x1=d x1=c x1=d

x2=c -5 -10 x2=c -5 0

x2=d 0 -1 x2=d -10 -1

Can also write as:
x1=c x1=d

x2=c (-5,-5) (0,-10)

x2=d (-10,0) (-1,-1)

A ”stable solution” is one where neither player has any incentive to change their action.

Stable solution = (confess, confess)

Example: Penny matching (heads/tails)

x1=h x1=t

x2=h (1,0) (0,1)

x2=t (0,1) (1,0)

Player 1 wins if the moves agree; Player 2 wins if the moves disagree. This is a ”zero-sum” game (well,
actually it’s ”constant-sum” game, but for strategic purposes, they’re the same.

No stable entry. But there is a stable strategy:

• both players flip a fair coin.
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Mixed Strategies

Define pi , Pr[xi=1] be a randomized strategy for player i

Define Mi(p1,p2) = E(Mi(x1,x2)) where x1 is drawn from p1, x2 from p2.

(p1,p2) is a ”mixed strategy” for the game (”mixed”=probabilistic).

M1(p1,p2) = (1-p1)(1-p2)M1(0,0) *

p1p2M1(0,1) *

(1-p1)(1-p2)M1(1,0) *

p1p2M1(1,1)

If we fix p2, then M1(p1,p2) is a linear function of p1. So if p2 is fixed, there are 3 possible ways the function
can look: positive slope, negative slope, zero slope:

• if positive slope: play fixed action 1
• if negative slope: play fixed action 0
• if zero slope: play anything

Nash Equilibrium

Definition: a mixed strategy (p1,p2) is a ”Nash Equilibrium” for the matrix game (M1,M2) if two symmetric
conditions hold:

• M1(p1,p2) ≥ M1(p1’,p2) ∀ p1’∈[0,1]
• M2(p1,p2) ≥ M2(p1,p2’) ∀ p2’∈[0,1]

So neither player has a unilateral incentive to deviate.

Example: Correlated equilibria (go/stop)

x1=g x1=s

x2=g (-10,-10) (0,-1)

x2=s (-1,0) (-1,-1)

23.3 Nash’s Theorem

For any matrix game (M1,M2) there exists a (possibly mixed) Nash equilibrium. Holds for any n.

Sperner Labeling

• Consider an equilateral triangle
• Triangulate into smaller equilateral triangles

– segment with 5 horiz sections, then segment each section with smaller equilateral triangles

4
44
444
4444
44444

A sperner labeling:

• Puts a 0, 1, or 2 label at ever vertex of the segmented triangle
• exterior corners are labeled 0, 1, and 2.
• Vertices on exterior sides can not have the label from the opposite corner.
• Internal vertices get any label
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0

/\
/ \
1--0

/\ /\
/ \/ \
0---1--0

/\ /\ /\
/ \/ \/ \
1--2---1---0

/\ /\ /\ /\
/ \/ \/ \/ \
0---2--0---1---2

/\ /\ /\ /\ /\
/ \/ \/ \/ \/ \
1---1---2---1---1--2

Sperner’s Lemma: any sperner labeling results in at least one small triangle with veritces labeled (0,1,2).

Intuition:

• Think of each triangle as a room
• Vertex is any (0,1) edge.
• Since we always move through (0,1) edges, we must be in either a (0,1,0), a (0,1,1), or a (0,1,2) triangle.
If it’s (0,1,2), we’re done. Otherwise, go through the other ”door”. Keep going through ”doors” until
we get to a (0,1,2) triangle.

Proof:

• First, add edges on (0,1) side of big triangle.
– (ensures that there is exactly 1 exterior ”door” = (0,1) edge)
– Enter the triangle containing an exterior (0,1) edge
– If not in a (0,1,2) triangle, but entered a triangle via a (0,1)

edge, then enter the other adjancent triangle across a (0,1) edge.
• We will never re-visit any triangle.

– Consider the first triangle that we revisit
– We must have entered from either the place that we entered or the place that we left. But then
we must have revisited that triangle. So this wasn’t the first triangle we revisited. But that’s a
contradiction.

– We can’t ”leave” the castle, since there is only one exterior
(0,1) edge.

Brower’s Fixed Point Theorem: For any convex region and a function that maps points from that region to
that region, then it has a fixed point.

Brouwer’s Fixed Point Theorem

• Let S be any (n-dimensional) simplex (e.g., S=equilateral triangle in R)
• Let φ: S→ S be any continuous mapping
• Then ∃ x s.t. φ(x)=x

Proof sketch (for special case of the equilateral triangle):

• Let T1, T2, . . ., Tn, . . . be a nested sequence of successively finer triangulations.
• Define labeleings L1, L2, . . ., Ln, . . . for each triangulation Tn.
• Triangle labeling:

– Let x be an interior edge that we’re trying to label, which is a subtriangulation of T.
– Draw a ray from x through φ(x).
– Each edge of the outer triangle determines a single label
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– Label x with the label for the (outer) edge that the ray passes through
– Break ties (at vertices) in favor of lowest label

Hm, this might not be quite right. But the ideas is that we’re supposed to be able to define a labeling that
depends on φ(x) that’s a sperner labeling.

• So in every labeling Ln under φ, ∃ a small (0,1,2) triangle.
• Let xi be the center of a (0,1,2) triangle in Li
• (from real analysis) the infinite sequence x1, x2, . . ., xn, . . . has an infinite convergant subsequence
with limit x.

Claim: φ(x) = x.

• intuition: x is the center of an arbitrarily small 0-1-2 triangle.
• in a 0-1-2 triangle, φ maps the corners (which are close to each other) in very different directions: the
angles spanned by the corner vectors are ≥ π/3.

• continuity says that if we pick a small enough region R around x, then the size of the corresponding
φ(R) must be small

• so R must overlap φ(R).
• Make R arbitrarily small, and x=φ(x).
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Wednesday, April 17, 2002

24 Graphical Games

Players 1, . . ., n with joint action xbar and mixed strategy pbar.

1

2

3

4

6

5

7 8

Represent using local payoffs: Size is exponential in the max degree, not in n.

24.1 Tree

Assume that G is a tree. Then we can define an efficient algorithm..

U

V

A

B

C

X Y

UpG(U) = set of all nodes ”upstream” from U, including U

GU = graph induced by UpG(U)

i.e., just the local game matrices in all nodes above U. But we need to change the game matrix for U: it
expects an input from V. Fix a value for it (i.e., marginalize V’s input out of U’s matrix).

So now we’ve created a new smaller graphical game. It has a nash equilibrium (by Nash’s theorem). Call
this an ”upstream nash equilibrium from U”.
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