Lecture notes by Edward Loper

Course: Ling 554 (Type-Logical Semantics) Professor: Bob Carpenter Institution: University of Pennsylvania

1 Review of update semantics

- distinction between world knowledge & discoures logic.
- divide world into referential part and propostional part..
- nonrigid designation
- extension of scope of \exists , not \forall .
- We can get de re (belief about object) vs de dicto (belief about description) distinctions.

2 λ calculus and type theory

Define $2 \perp$ types: e (entity), t (truth value).

Walks: $e \rightarrow t$

Define: $BasTyp = {Ind, Bool}$

interpret concat as modus ponens or functional application.

2.1 Toy Language

- 1. $\operatorname{var}_{\tau}$: a countably infinite set of type τ
- 2. $\operatorname{con}_{\tau}$: a set of constants of type τ
- 3. Var = $\cup_{\tau} \in \text{Typ}$ Var_{τ}
- 4. Con = $\cup_{\tau} \in \mathrm{Typ}$ Con_{τ}

terms:

- 1. $\operatorname{var}_{\tau} \subset \operatorname{Term}_{\tau}$
- 2. $\operatorname{con}_{\tau} \subset \operatorname{Term}_{\tau}$
- 3. function application
- 4. lambda abstraction: λ x.(a) yields the appropriate type.

Free variables vs. bound variables..

Substitution: $\alpha[\mathbf{x} \mapsto \beta]$

FreeFor($\alpha, \mathbf{x}, \beta$): is α free for \mathbf{x} in β ?

A model is: $M = \langle Dom, \llbracket \bullet \rrbracket \rangle$

We still need the equiv of our g function: θ : Var \rightarrow Dom, s.t. $\theta(\mathbf{x}) \in \text{Dom}_{\tau}$ if $\mathbf{x} \in \text{Var}_{\tau}$ denotations: $\|\alpha\|_{M}^{\theta}$

2.2 Properties

- system is sound: if α is type τ , $[\![\alpha]\!] \in \text{Dom}_{\tau}$, for every θ and M.
- bound variables' names unimportant
- logical equivlanance if denotations are equal..

Type of \land is bool \rightarrow bool \rightarrow bool.

order in which a function recieves its arguments is arbitrary.

consider: John loves and Mary hates apple pie.

give "John loves" an interpretation by permuting the lambda variables.

Define composition: $(\beta \circ \alpha)(\delta) = \beta(\alpha(\delta))$

lets us do things like combining "carefully walk" before applying it..

 α reduction = substitute a bound variable β reduction = apply a function η reduction = $\lambda x(\alpha(x)) \mapsto \alpha$ if x not in free(α)

Other properties:

- reflexivity
- transitivity
- congruance: $\alpha \mapsto \alpha', \ \beta \mapsto \beta' \vdash \alpha(\beta) \mapsto \alpha'(\beta')$
- $\bullet\,$ congruance on lambda abstraction..
- equivalance

reductions are confluent (church-rosser) reduction eventually halts for any finite expression we can define notion of proof.

Define normal forms. β normal form means there are no more β reductions that you can do, etc. If α and β are in normal form, $\alpha \equiv \beta$ iff $\alpha =_{\alpha} \beta$

completeness: two λ -terms α and β are logically equivalant only if $\vdash \alpha \Leftrightarrow \beta$ is provable.

decidability: there is an algorithm for deciding whether 2 terms are logically equivlant.

Single functor/single term. But do we only have binary branching? Functions might take multiple args..

So define product times: $(\sigma \times \tau) \in \text{Typ if } \sigma, \tau \in \text{Typ}$

 $\llbracket \text{Give}](\llbracket \text{John}], \llbracket \text{Book}])$

Define new constants and variables of product type. Does NL have product type constants? Need prrojection functions:

- $\pi_1(\alpha)$ gives 1st element
- $\pi_2(\alpha)$ gives 2nd element

 $\operatorname{Dom}_{\sigma \ \times \ \tau} = \operatorname{Dom}_{\sigma} \ \times \ \operatorname{Dom}_{\tau}$

Define operators on terms.. curry/uncurry, commute and reassociate.

2.3 Applicative Categorial Grammar

Start with a basic set of categories, BasCat (np, n, s).

Define them as:

- np: ind
- n: ind->bool
- s: bool

Define Cat:

- 1. BasCat \subseteq Cat
- 2. If A, B \in Cat then (A/B), (A{\B) \in Cat
- A/B is the forward functor with domain (arg) B and range (result) A.
- B{\}A is the backward functor with domain (arg) B and range (result) A.

 $(B B\{\A) \rightarrow A (A/B B) \rightarrow A$ $Typ(A/B) = Typ(B\{\A) = Typ(B) \rightarrow Typ(A)$ $VP: Typ(np\{\s) = Typ(np) \rightarrow Typ(s) = ind \rightarrow bool$ abbreviate lexical entries as: $e \Rightarrow \alpha$: $A = \langle e, \langle A, a \rangle \rangle$ $\langle kiss, \langle ((np\{\s)/np), (ind \rightarrow bool)) \rangle$

np{\}s: expects an np on the left, gives an s. np{\}s/np: expects an np on left and right, gives an S. np{\}s/np/np: expects 1 np on left, 2 on right, gives s.

```
Proof tree:
Bobb Barr sneezes
----- Lx ----- Lx
Bobbie: np
```

Tuesday, October 24, 2000

3 Game theoretical semantics

Hintika: the principles of mathematics revisited

We are given a first-order language L and a model M of L.

Define a two-person game G(S; M)

- 1. Two players:
 - myself: the initial verifier
 - nature: the initial falsifier
 - At each stage of the game, the verifier is trying to show S is
 - true in M, and the falsifier that it's false.
- 2. Everything gets named

A sentence is true if the verifier has a winning strategy. A sentence is false if the falsifier has a winning strategy.

Theorem: for any 1st-order sentene, tarski-type truth and GTS truth coincide.

A sigma(1,1) sentence is a second order existential sentence. e.g., $(\exists f1, f2)(\forall x)[[f2(x)=0 \land R(\ldots)]]$

In $\forall x \exists yRxy$, choice of y depends on x.

Introduce: $(\exists y/\forall x)$ means the choice of y is independent of x.

Consider: some representative from every village met some relative of every townsman.

3.1 Partiality

Assign expressions one of 3 values: 0, 1, and ?. Use positive and negative extensions of predicates:

- 1. P(A) = 1 if $a \in P+$
- 2. P(A) = 0 if $a \in P$ -
- 3. P(A) = ? if $(a \notin P+)$ and $(a \notin P-)$

Strong Kleene: $(1 \lor ? = 1)$ Bochvar: $(1 \lor ? = ?)$

it's important to prove that we'll never get a sentence that's both true and false..

3.2 Consequences

IF logic is not compositional in the ordinary sense! When we get down to $(\exists x/\forall y)S[x]$, we need to know about y... We can't just use substitution.

3.3 Epistemic Logic

Define Ka as an operator, intuitively interpreted as "a knows that ...".

Each world $M_0 \in W$ and each person b existing in M_0 is associated with a set of worlds, the epistemic b-alternatives to M_0 .

Let Ω be a model structure and $M_0 \in \Omega$. Then Ka(S) in M_0 iff for each epistemic a-alternative M_1 to M_0 in Ω , S is true...

(R.K) The game $G(Ka(S); M_0)$ begins with a choice by the falsifier of an epistemic a-alternative M_1 to M_0 . Continue as $G(S; M_1)$

3.4 Natural Language

Assert that there are no overt quantifier-variable pairings.. Modify game rules so names for individuals are substituted for entire generalized quantifiers (= Det N).

Treat interpretation of sentences as subgames. Individuals used for a subgame G(S;M) ust be selected from a choice set Is..

Tuesday, November 7, 2000

Sequent Calculus 4

Treat proof rules as arrays: record the entailment relations as you go along. Each node records a set of premises and a conclusion.

You can treat Γ as a finite conjunction of formulas.

Semantic Tableaux 4.1

```
"branches close" \rightarrow inconsistant
```

 $\Gamma \models \varphi$

Either show that a branch closes (inconsistancy) or no branch closes.

Use rules to keep rewriting the set, until we get to the end.

Contradiction:

 $\Gamma \models \bot$

Consistant:

 $\Gamma \models \texttt{something}$ $\Gamma \neg \models \bot$ Rules: || Γ , $\phi \land \psi$ consistant _____ Γ , $\phi \land \psi$, ϕ , ψ consistant Γ , $\neg(\phi \land \psi)$ consistant

|| Γ , $\neg(\phi \land \psi)$, $\neg \psi$ consistant OR Γ , $\neg(\phi \land \psi)$, $\neg\phi$, consistant

At any point, we're keeping track of a set of possible consistant assertions.

Simplify by eliminating repeating conjunctions:

 Γ , $\phi \land \psi$ consistant

 Γ , ϕ , ψ consistant

Turn it up side down and invert consistant:

 $\[\Gamma, \phi \land \psi, \phi, \psi \models \bot \\ ------ \\ \Gamma = \langle \downarrow \land \downarrow \downarrow \downarrow \downarrow \rangle \]$ Γ , $\phi \land \psi \models \perp$

We can write $\models \perp$ as \Rightarrow with nothing on the right

Rules 4.2

Closing:

----- (basic segment) Γ , ϕ , $\neg \phi \Rightarrow$ $\left|\begin{array}{c} \Gamma, \ \phi, \ \psi \Rightarrow \\ \hline \\ \Gamma, \ \phi \land \psi \Rightarrow \end{array}\right|$

 $\left| \begin{array}{c} \Gamma, \ \phi, \ \psi \Rightarrow \\ \hline \\ \Gamma, \ \phi \land \psi \Rightarrow \end{array} \right|$ $\left| \begin{array}{c} \Gamma, \phi \Rightarrow \quad \Gamma, \psi \Rightarrow \\ ------ \end{array} \right|$ Γ , $\phi \lor \psi \Rightarrow$ $\left\|\begin{array}{c} \Gamma, \neg \phi \Rightarrow & \Gamma, \psi \Rightarrow \\ \hline \Gamma, \ \phi \rightarrow \psi \Rightarrow \end{array}\right.$ Γ , ϕ , $\neg \psi$ $\left\| \begin{array}{c} \Gamma, \neg(\phi \rightarrow \psi) \end{array} \right. \Rightarrow$ Γ , $\phi \Rightarrow$ $\left\| \begin{array}{c} \neg, \neg \\ \neg, \neg \\ \neg \\ \neg \\ \phi \end{array} \right. \Rightarrow$ For Tableaux: Γ , $\forall \mathbf{x}\phi \Rightarrow$ Γ , $\forall x\phi$, $\phi(x/x) \Rightarrow$ The following are equivlanat: $\Gamma \Rightarrow \phi$ $\left|\begin{array}{c} -----\\ \Gamma, \neg \phi \end{array}\right. \Rightarrow$ Use that to simplify to things like: $\begin{tabular}{ccc} \Gamma \Rightarrow \phi & \Gamma \Rightarrow \psi \\ \hline \hline \end{array} \end{tabular}$ $\Gamma \Rightarrow \phi \wedge \psi$ In a linguistics domain, rules will be things like: NP VP \Rightarrow S

Which means that basically we have a CFG here (it's equivalant)..

4.3 Gentzen Sequents

Allow sequents to have any finite number of formulas on both the left AND the right side:

 $\Gamma \, \Rightarrow \, \Delta$

Means that if all formulas in Γ are true, then at least one formula in Δ is true.

see slides p. 12

Now, sequents are no longer equivalant to rewrite rules, since there can be more than one thing on the right.