Lecture notes by Edward Loper

Course: Ling 554 (Type-Logical Semantics)
Professor: Bob Carpenter
Institution: University of Pennsylvania

Tuesday, October 3,

1 Review of update semantics

distinction between world knowledge & discoures logic.

divide world into referential part and propostional part..

nonrigid designation

extension of scope of 3, not V.

We can get de re (belief about object) vs de dicto (belief about description) distinctions.

2) calculus and type theory

Define 2 L types: e (entity), t (truth value).
Walks: e— t
Define: BasTyp = {Ind, Bool}

interpret concat as modus ponens or functional application.

2.1 Toy Language

var,: a countably infinite set of type 7
con;: a set of constants of type 7

Var = Ut € Typ) Var,

Con = Ut € Typ) Con,

Ll o

terms:

var, C Term,

con, C Term,

function application

lambda abstraction: A x.(a) yields the appropriate type.

=L

Free variables vs. bound variables..

Substitution: afx— 0]

FreeFor(a,x,03): is « free for x in 57

A model is: M = (Dom, [e])

We still need the equiv of our g function: 8: Var — Dom, s.t. §(x) € Dom, if x € Var,

denotations: [a]?

2.2 Properties

e system is sound: if « is type 7, [o] € Dom,, for every 6 and M.
e bound variables’ names unimportant
e logical equivlanance if denotations are equal..

Type of A is bool— bool— bool.
order in which a function recieves its arguments is arbitrary.
consider: John loves and Mary hates apple pie.

give ”John loves” an interpretation by permuting the lambda variables.

2000

Define composition: (3 o «)(d) = B(a(d))
lets us do things like combining ” carefully walk” before applying it..

a reduction = substitute a bound variable § reduction = apply a function 7 reduction = X x(«(x)) — « if
x not in free(a)

Other properties:

reflexivity

transitivity

congruance: ar—a’, f—F3" F a(B)—a’(3)
congruance on lambda abstraction..
equivalance

reductions are confluent (church-rosser) reduction eventually halts for any finite expression

we can define notion of proof.

Define normal forms.. 3 normal form means there are no more (8 reductions that you can do, etc.
If @ and B are in normal form, a = g iff a =,

completeness: two A-terms « and 3 are logically equivalant only if F a < [is provable.

decidability: there is an algorithm for deciding whether 2 terms are logically equivlant.

Tuesday, October 10, 2000

Single functor /single term. But do we only have binary branching? Functions might take multiple args..
So define product times: (o x 7) € Typ if o, 7 € Typ
[Give]([John], [Book])
Define new constants and variables of product type. Does NL have product type constants?
Need prrojection functions:
e 71() gives 1st element
e () gives 2nd element
Dom, « - = Dom, x Dom,

Define operators on terms.. curry/uncurry, commute and reassociate.

2.3 Applicative Categorial Grammar

Start with a basic set of categories, BasCat (np, n, s).
Define them as:
e np: ind

e n: ind->bool
e s: bool

Define Cat:

1. BasCat C Cat
2. If A, B € Cat then (A/B), (A{\}B) € Cat

e A/B is the forward functor with domain (arg) B and range (result) A.
e B{\}A is the backward functor with domain (arg) B and range (result) A.

(BB{\}A) = A(A/BB) — A

Typ(A/B) = Typ(B{\}A) = Typ(B) — Typ(A)

VP: Typ(np{\}s) = Typ(np) — Typ(s) = ind — bool
abbreviate lexical entries as: e = a: A = <e, <A, a>>
<kiss, <((np{\}s)/np), (ind—(ind— bool))>

np{\}s: expects an np on the left, gives an s. np{\}s/np: expects an np on left and right, gives an S.
np{\}s/np/np: expects 1 np on left, 2 on right, gives s.

Proof tree:
Bobb Barr sneezes

Bobbie: np

Tuesday, October 24, 2000

3 Game theoretical semantics

Hintika: the principles of mathmatics revisited
We are given a first-order language L and a model M of L.
Define a two-person game G(S; M)

1. Two players:
e myself: the initial verifier
e nature: the initial falsifier

e At each stage of the game, the verifier is trying to show S is
true in M, and the falsifier that it’s false.
2. Everything gets named

A sentence is true if the verifier has a winning strategy. A sentence is false if the falsifier has a winning
strategy.

Theorem: for any lst-order sentene, tarski-type truth and GTS truth coincide.

A sigma(1,1) sentence is a second order existential sentence. e.g., (3 1, £2)(V x)[[f2(x)=0A R(...)]]
In V x3 yRxy, choice of y depends on x.

Introduce: (3 y/V x) means the choice of y is independant of x.

Consider: some representative from every village met some relative of every townsman.

3.1 Partiality

Assign expressions one of 3 values: 0, 1, and ?. Use positive and negative extensions of predicates:

1. P(A) = lifac P+
2. P(A) =0ifa € P-
3. P(A) = ? if (a ¢ P+) and (a ¢ P-)

Strong Kleene: (1v? = 1) Bochvar: (1V? = 7)

it’s important to prove that we’ll never get a sentence that’s both true and false..

3.2 Consequences

IF logic is not compositional in the ordinary sense! When we get down to (3 x/V y)S[x], we need to know
about y... We can’t just use substitution..

3.3 Epistemic Logic

Define Ka as an operator, intuitively interpreted as ”a knows that ...”.

Each world My € W and each person b existing in My is associated with a set of worlds, the epistemic
b-alternatives to M.

Let Q be a model structure and MyeQ.. Then Ka(S) in My iff for each epistemic a-alternative M; to My in
Q, S is true...

(R.K) The game G(Ka(S); M) begins with a choice by the falsifier of an epistemic a-alternative My to Mj.
Continue as G(S; M;)

3.4 Natural Language

Assert that there are no overt quantifier-variable pairings.. Modify game rules so names for individuals are
substituted for entire generalized quantifiers (= Det N).

Treat interpretation of sentences as subgames. Individuals used for a subgame G(S;M) ust be selected from
a choice set Is..

Tuesday, November 7, 2000

4 Sequent Calculus

Treat proof rules as arrays: record the entailment relations as you go along. Each node records a set of
premises and a conclusion.

You can treat I' as a finite conjunction of formulas.

4.1 Semantic Tableaux

”branches close” — inconsistant

IT e
Either show that a branch closes (inconsistancy) or no branch closes.
Use rules to keep rewriting the set, until we get to the end.

Contradiction:

ITk L

Consistant:

I' = something

r - L

Rules:

I', ¢ A 9 consistant

', A %, ¢, 1 consistant
I', =(¢p N) consistant

', =(¢ A ¢¥), = ¢ consistant OR I', = (¢ A ¥), ¢, consistant
At any point, we're keeping track of a set of possible consistant assertions.

Simplify by eliminating repeating conjunctions:
I', ¢ A 1 consistant

I', ¢, ¥ consistant

Turn it up side down and invert consistant:

Lo ANy, ¢, 9 FL

We can write =L as = with nothing on the right

4.2 Rules

Closing;:

F’ ¢’ _|¢
r, = (¢—¢) =
r, ¢ =
r, - - ¢ =
For Tableaux:
T, V xp =

I, V x¢, ¢x/3) =
The following are equivlanat:
' = ¢

r, ¢ =
Use that to simplify to things like:
' = ¢ I' =%

I' = ony
In a linguistics domain, rules will be things like:

| ¥p VP = s
Which means that basically we have a CFG here (it’s equivalant)..

4.3 Gentzen Sequents

Allow sequents to have any finite number of formulas on both the left AND the right side:
|| r=A

Means that if all formulas in I" are true, then at least one formula in A is true.

see slides p. 12

Now, sequents are no longer equivalant to rewrite rules, since there can be more than one thing on the right..

	Review of update semantics
	 calculus and type theory
	Toy Language
	Properties
	Applicative Categorial Grammar

	Game theoretical semantics
	Partiality
	Consequences
	Epistemic Logic
	Natural Language

	Sequent Calculus
	Semantic Tableaux
	Rules
	Gentzen Sequents

