
Lecture notes by Edward Loper

Course: Ling 554 (Type-Logical Semantics)
Professor: Bob Carpenter
Institution: University of Pennsylvania

1



Tuesday, October 3, 2000

1 Review of update semantics

• distinction between world knowledge & discoures logic.
• divide world into referential part and propostional part..
• nonrigid designation
• extension of scope of ∃, not ∀.
• We can get de re (belief about object) vs de dicto (belief about description) distinctions.

2 λ calculus and type theory

Define 2 ⊥ types: e (entity), t (truth value).

Walks: e→ t

Define: BasTyp = {Ind, Bool}

interpret concat as modus ponens or functional application.

2.1 Toy Language

1. varτ : a countably infinite set of type τ
2. conτ : a set of constants of type τ
3. Var = ∪(τ ∈ Typ) Varτ
4. Con = ∪(τ ∈ Typ) Conτ

terms:

1. varτ ⊂ Termτ

2. conτ ⊂ Termτ

3. function application
4. lambda abstraction: λ x.(a) yields the appropriate type.

Free variables vs. bound variables..

Substitution: α[x7→β]

FreeFor(α,x,β): is α free for x in β?

A model is: M = 〈 Dom, [[ • ]]〉

We still need the equiv of our g function: θ: Var → Dom, s.t. θ(x) ∈ Domτ if x ∈ Varτ

denotations: [[α]]M
θ

2.2 Properties

• system is sound: if α is type τ , [[α]] ∈ Domτ , for every θ and M.
• bound variables’ names unimportant
• logical equivlanance if denotations are equal..

Type of ∧ is bool→ bool→ bool.

order in which a function recieves its arguments is arbitrary.

consider: John loves and Mary hates apple pie.

give ”John loves” an interpretation by permuting the lambda variables.

2



Define composition: (β ◦ α)(δ) = β(α(δ))

lets us do things like combining ”carefully walk” before applying it..

α reduction = substitute a bound variable β reduction = apply a function η reduction = λ x(α(x)) 7→ α if
x not in free(α)

Other properties:

• reflexivity
• transitivity
• congruance: α 7→α’, β 7→β’ ` α(β)7→α’(β’)
• congruance on lambda abstraction..
• equivalance

reductions are confluent (church-rosser) reduction eventually halts for any finite expression

we can define notion of proof.

Define normal forms.. β normal form means there are no more β reductions that you can do, etc.

If α and β are in normal form, α ≡ β iff α =α β

completeness: two λ-terms α and β are logically equivalant only if ` α ⇔ β is provable.

decidability: there is an algorithm for deciding whether 2 terms are logically equivlant.

3



Tuesday, October 10, 2000

Single functor/single term. But do we only have binary branching? Functions might take multiple args..

So define product times: (σ × τ) ∈ Typ if σ, τ ∈ Typ

[[ Give]]([[ John]], [[ Book]])

Define new constants and variables of product type. Does NL have product type constants?

Need prrojection functions:

• π1(α) gives 1st element
• π2(α) gives 2nd element

Domσ × τ = Domσ × Domτ

Define operators on terms.. curry/uncurry, commute and reassociate.

2.3 Applicative Categorial Grammar

Start with a basic set of categories, BasCat (np, n, s).

Define them as:

• np: ind
• n: ind->bool
• s: bool

Define Cat:

1. BasCat ⊆ Cat
2. If A, B ∈ Cat then (A/B), (A{\}B) ∈ Cat

• A/B is the forward functor with domain (arg) B and range (result) A.
• B{\}A is the backward functor with domain (arg) B and range (result) A.

(B B{\}A) → A (A/B B) → A

Typ(A/B) = Typ(B{\}A) = Typ(B) → Typ(A)

VP: Typ(np{\}s) = Typ(np) → Typ(s) = ind → bool

abbreviate lexical entries as: e ⇒ α: A = <e, <A, a>>

<kiss, <((np{\}s)/np), (ind→(ind→ bool))>

np{\}s: expects an np on the left, gives an s. np{\}s/np: expects an np on left and right, gives an S.
np{\}s/np/np: expects 1 np on left, 2 on right, gives s.

Proof tree:
Bobb Barr sneezes

----------- Lx ------------ Lx

Bobbie: np

4



Tuesday, October 24, 2000

3 Game theoretical semantics

Hintika: the principles of mathmatics revisited

We are given a first-order language L and a model M of L.

Define a two-person game G(S; M)

1. Two players:
• myself: the initial verifier
• nature: the initial falsifier
• At each stage of the game, the verifier is trying to show S is

true in M, and the falsifier that it’s false.
2. Everything gets named

A sentence is true if the verifier has a winning strategy. A sentence is false if the falsifier has a winning
strategy.

Theorem: for any 1st-order sentene, tarski-type truth and GTS truth coincide.

A sigma(1,1) sentence is a second order existential sentence. e.g., (∃ f1, f2)(∀ x)[[f2(x)=0∧ R(. . .)]]

In ∀ x∃ yRxy, choice of y depends on x.

Introduce: (∃ y/∀ x) means the choice of y is independant of x.

Consider: some representative from every village met some relative of every townsman.

3.1 Partiality

Assign expressions one of 3 values: 0, 1, and ?. Use positive and negative extensions of predicates:

1. P(A) = 1 if a ∈ P+
2. P(A) = 0 if a ∈ P-
3. P(A) = ? if (a /∈ P+) and (a /∈ P-)

Strong Kleene: (1∨? = 1) Bochvar: (1∨? = ?)

it’s important to prove that we’ll never get a sentence that’s both true and false..

3.2 Consequences

IF logic is not compositional in the ordinary sense! When we get down to (∃ x/∀ y)S[x], we need to know
about y. . . We can’t just use substitution..

3.3 Epistemic Logic

Define Ka as an operator, intuitively interpreted as ”a knows that . . .”.

Each world M0 ∈ W and each person b existing in M0 is associated with a set of worlds, the epistemic
b-alternatives to M0.

Let Ω be a model structure and M0∈Ω.. Then Ka(S) in M0 iff for each epistemic a-alternative M1 to M0 in
Ω, S is true. . .

(R.K) The game G(Ka(S); M0) begins with a choice by the falsifier of an epistemic a-alternative M1 to M0.
Continue as G(S; M1)

5



3.4 Natural Language

Assert that there are no overt quantifier-variable pairings.. Modify game rules so names for individuals are
substituted for entire generalized quantifiers (= Det N).

Treat interpretation of sentences as subgames. Individuals used for a subgame G(S;M) ust be selected from
a choice set Is..

6



Tuesday, November 7, 2000

4 Sequent Calculus

Treat proof rules as arrays: record the entailment relations as you go along. Each node records a set of
premises and a conclusion.

You can treat Γ as a finite conjunction of formulas.

4.1 Semantic Tableaux

”branches close” → inconsistant

Γ |= ϕ

Either show that a branch closes (inconsistancy) or no branch closes.

Use rules to keep rewriting the set, until we get to the end.

Contradiction:

Γ |= ⊥

Consistant:
Γ |= something

Γ ¬|= ⊥

Rules:
Γ, φ ∧ ψ consistant

---------------------

Γ, φ ∧ ψ, φ, ψ consistant

Γ, ¬(φ ∧ ψ) consistant

---------------------

Γ, ¬(φ ∧ ψ), ¬ ψ consistant OR Γ, ¬(φ ∧ ψ), ¬φ, consistant

At any point, we’re keeping track of a set of possible consistant assertions.

Simplify by eliminating repeating conjunctions:

Γ, φ ∧ ψ consistant

---------------------

Γ, φ, ψ consistant

Turn it up side down and invert consistant:

Γ, φ ∧ ψ, φ, ψ |=⊥
---------------------

Γ, φ ∧ ψ |=⊥

We can write |=⊥ as ⇒ with nothing on the right

4.2 Rules

Closing:

----------- (basic segment)

Γ, φ, ¬φ ⇒

Γ, φ, ψ ⇒
--------------

Γ, φ∧ψ ⇒

7



Γ, φ, ψ ⇒
--------------

Γ, φ∧ψ ⇒

Γ,φ ⇒ Γ,ψ ⇒
----------------

Γ, φ∨ψ ⇒

Γ,¬φ ⇒ Γ,ψ ⇒
-----------------

Γ, φ→ψ ⇒

Γ, φ, ¬ψ
--------------

Γ, ¬(φ→ψ) ⇒

Γ, φ ⇒
---------

Γ, ¬ ¬ φ ⇒

For Tableaux:
Γ, ∀ xφ ⇒

------------------

Γ, ∀ xφ, φ(x/x) ⇒

The following are equivlanat:

Γ ⇒ φ

---------

Γ, ¬φ ⇒

Use that to simplify to things like:

Γ ⇒ φ Γ ⇒ ψ

-------------------

Γ ⇒ φ∧ψ

In a linguistics domain, rules will be things like:

NP VP ⇒ S

Which means that basically we have a CFG here (it’s equivalant)..

4.3 Gentzen Sequents

Allow sequents to have any finite number of formulas on both the left AND the right side:

Γ ⇒ ∆

Means that if all formulas in Γ are true, then at least one formula in ∆ is true.

see slides p. 12

Now, sequents are no longer equivalant to rewrite rules, since there can be more than one thing on the right..

8


	Review of update semantics
	 calculus and type theory
	Toy Language
	Properties
	Applicative Categorial Grammar

	Game theoretical semantics
	Partiality
	Consequences
	Epistemic Logic
	Natural Language

	Sequent Calculus
	Semantic Tableaux
	Rules
	Gentzen Sequents


