Representing Text Chunks

Tjong Kim Sang & Veenstra 1999

Nikhil Dinesh Edward Loper

Introduction

- Goal: Explore the effect of different output representations on performance
- Method:
 - Train chunk parsers using 6 different representations
 - Use 3 related learning algorithms
 - Compare performance
- Conclusion: No significant effect

3

Outline

- Introduction
- Representations
- Experiment 1 & Discussion
- Experiment 2 & Discussion
- Experiment 3 & Discussion
- Conclusions

Representations (Complete)

IOB1	The first word inside a baseNP immediately following another gets a B tag
IOB2	All baseNP-initial words receive a B tag
IOE1	The final word inside a baseNP immediately preceding another gets an E tag
IOE2	All baseNP-final words get an E tag

Representations (Partial)

[All baseNP-initial words get a [tag and all other words get a '.' tag
]	All baseNP-final words get a] tag and all other words get a '.' tag
Ю	All words inside a baseNP receive an I tag and all other words get an O tag

Experiment 1: Methods

- Algorithm: memory based learner (IB1-IG)
 - Use information gain to define distance metric
 - Use the classification of the nearest neighbor
- Features:
 - Surrounding words and POS tags
 - Same basic features used by R&M 95
- · All tagging is independent
 - No dependence on previous predictions
 - No cascaded decisions
 - For combination reps (e.g., "[+IO"), each tag is assigned independently.

7

Combinations of Partial Reps

[+]	BaseNP = []
[+IO	[+ I = B. (similar to IOB2)
IO+]	I +] = E (similar to IOE2)
	6

Over-fitting the data?

- Find the optimal context size for each output representation.
- How do we decide what context to use?

"The optimal context size will be determined by comparing the results of different context sizes on the training data." (§2.3)

- Training on the test data!
 - For experiment 1: 25 possible contexts
 - For experiment 2: 256 possible contexts
 - For experiment 3: ~16,000 possible contexts

Experiment 1: Results

- No (statistically) significant differences
- "[+IO" and "IO+]" do slightly better.
- Interesting to think about why that might be
- But remember that these differences are unreliable at best.
- Conclusion: output representation doesn't matter (in this case).

Rep	Context	$F_{\beta=1}$	
IOB1	L=2/R=1	89.17	
IOB2	L=2/R=1	88.76	
IOE1	L=1/R=2	88.67	
IOE2	L=2/R=2	89.01	
[+]	2/1 + 0/2	89.32	
[+10	2/0 + 1/1	89.43	
IO+]	1/1 + 0/2	89.42	

9

Why might output representation matter?

- When do we expect output representation to matter?
- The output representation provides the algorithm with a way of dividing up the problem.
 - Similar to features?
- It's known that feature choice has a major effect.
- What about the choice of output representation?
 - Representations with the same information content?
 - Representations with different information content?

11

Generality of Conclusion

- How general is the conclusion that output representation doesn't matter?
 - What about other algorithms?
 - Transformational (e.g., R&M)
 - Maxent
 - SVM
 - What about other domains?
 - · POS tagging
 - PP attachment
 - What about other representations?
 - {I, O, B, B'}

10

Information Content

- All 6 representations have the same information content:
 - From the tagging for any representation, we can trivially derive taggings for all other reps.
- Is it just the information content that matters?
- Or is the information packaging also important?

Information Packaging

- Clearly, information packaging matters in some cases.
- Example: consider the representation "[+AB":
 - A if inside a base NP and word index is odd
 - A if outside a base NP and word index is even
 - B if outside a base NP and word index is odd
 - B if inside a base NP and word index is even
- · Same information content
- Very poor performance for most algorithms

13

Output Rep & Features

- Performance of an output representation depends on which features are chosen.
 - Example: for "[+AB", adding an "even" feature would improve performance considerably.
- Output representation must be a "good fit" with the features.
- TKS&V picked best features for each output rep
 - Try comparing performance of different output reps on a common feature set?

15

Information Packaging (2)

- Output representation must be "natural" for the learning algorithm and for the data.
- Example: for SVMs, we apply a transformation to make the problem *linearly separable*.

Follow-up Experiments

- Many interesting follow-up experiments to examine the effect of output representation choice. E.g.:
 - Replicate [TKS&V99] with different algorithms
 - Replicate [TKS&V99] with different domains
 - Replicate [TKS&V99] with different encodings
 - Encodings with the same information content
 - · Encodings with different information content
 - Compare performance of different output reps on a common feature set
- (anyone still looking for a final project? ②)

Experiment 2

- · "Cascaded" classifier
- Objective: To find the optimal no. of extra classification tags.

$$P(c_n | < w_n, t_n >, < w_{n-1}, t_{n-1}, c'_{n-1} >, < w_{n-2}, t_{n-2}, c'_{n-2} > ...)$$
 instead of

$$P(c_n | < w_n, t_n >, < w_{n-1}, t_{n-1} >, < w_{n-2}, t_{n-2} > ...)$$

17

Why Use Cascades?

- The reason for doing it in a cascade is because they wanted to consider right context as well
- Classification tag contexts in the range 0 to 3
- 256 * E1 combinations for complete reps
- 256 * 256 * E1 for partial reps

19

Experiment 2: Context for IOB1 Cascade 2 Cascade 1 w[n-2] w[n-1] w[n-1] w[n+1] w[n+2] w[n+3] t[n-2] t[n-1] t[n-

Experiment 2: Results

	Word/POS context	Chunk Tag	F score
IOB1	L=2 / R=1	1/2	90.12
IOB2	L=2 / R=1	1 / 0	89.30
IOE1	L=1 / R=2	1 / 2	89.55
IOE2	L=1 / R=2	0 / 1	89.73
[+]	2/1+0/2	0/0+0/0	89.32
[+ IO	2/0+1/1	0/0+1/1	89.78
IO +]	1/1+0/2	1/1+0/0	89.86

Experiment 2: Results

- What is improvement w.r.t the F measure?
- An increase in recall or precision with not too much of a decrease in the other metric
- But the recall took a big hit for a smaller improvement in the precision (in the IB1-IG paper) and scoring by the F measure won't consider this an advantage
- There seems to be a relationship between the metric used and the representation performance

21

Experiment 3

- Add classification of 3,4 and 5 experiments of the first series in addition to the optimal one to the second cascade
- Objective: To use different context sizes

 $\lambda_1 P(c_n | < context 1 >) + \lambda_2 P(c_n | < context 2 >)....$

22

Experiment 3: Contexts

- Combinations of 3,4 or 5 experiments of the following lists
- (0/0, 1/1, 2/2, 3/3, 4/4, 5/5) (Equal)
- (0/1, 1/2, 2/3, 3/4) (Right heavy)
- (1/0, 2/1, 3/2, 4/3) (Left heavy)
- (16 + 5 + 5) * E2 combinations
- 26 * 26 * E2 for partial reps

Experiment 3: Results

	Word/POS	Chunk	Combinations	F
IOB1	2/1	1/1	0/0 1/1 2/2 3/3	90.53
IOB2	2/1	1/0	2/1	89.30
IOE1	1/2	1/2	0/0 1/1 2/2 3/3	90.03
IOE2	1/2	0/1	1/2	89.73
[+]	2/1 + 0/2	0/0+0/0	- + -	89.32
[+10	2/0 + 1/1	0/0+1/1	- + 0/1 1/2 2/3 3/4	89.91
IO +]	1/1 + 0/2	1/1+0/0	0/1 1/2 2/3 3/4+ -	90.03

Experiment 4: Results

	W/T	С	Combinations	F
IOB1	3/3(3)	1/1	0/0(1) 1/1(1) 2/2(3) 3/3(3)	90.89 (0.63)
IOB2	3/3(3)	1/0	3/3(3)	89.72 (0.79)
IOE1	2/3(3)	1/2	0/0(1) 1/1(1) 2/2(3) 3/3(3)	90.12 (0.27)
IOE2	2/3(3)	0/1	2/3(3)	90.02 (0.48)
[+]	4/3(3) + 4/4(3)	0/0+0/0	-+-	90.08 (0.57)
[+ IO	4/3(3) + 3/3(3)	0/0+1/1	-+0/1(1) 1/2(3) 2/3(3) 3/4(3)	90.35 (0.75)
IO +]	3/3(3) + 2/3(3)	1/1+0/0	0/1(1) 1/2(3) 2/3(3) 3/4(3) + -	90.23 (0.73)

5

Experiment 4

- K nearest neighbors
- Experiment 1 was repeated with k=3
- Experiment 3 repeated with k=3 wherever it outperformed k=1

Conclusions & Questions

- Outline
 - What makes a good output representation?
 - Output representation & feature selection
 - Questions for Discussion

28

What Makes a Good Output Rep?

- A good output representation depends on:
 - The learning algorithm
 - The features
 - The data
- Intuition: an output representation is good if it divides data into groups with similar features.
 - "Similarity" depends on the learning algorithm
- Example: chunk parsing
 - For a given algorithm & feature set, which words tend to have similar feature values?
 - Words at the beginning of all base NPs?
 - Words at the beginning of base NPs preceded by base NPs?
 - Etc.

29

Questions

- Does output representation matter?
 - When does output representation matter?
- What makes a good output rep?
 - What factors do we need to consider?
- Is automatic output rep selection feasible?
- How do features relate to the output rep?
- What effect does the "size" (# of bits) of the output rep have?

31

Output Rep & Feature Selection

- Can we automatically choose a good output representation from a set of candidates?
 - c.f. feature selection
- Decision ordering:
 - Feature selection first?
 - Output representation selection first?
 - Consider them both at the same time?

Extra Slides (if there's time and/or interest)

Information Content

- What is the effect of using output representations that do not have the same information content?
- Example:
 - Task: classify texts as fiction or nonfiction
 - Use a fine grained output rep: scifi, thriller, reference, biography, etc.
- Advantage: output rep is more likely to divide the data into groups with similar features.
- Disadvantage: sparse data, more difficult to create the corpus.

33

Experiment 2 & HMMs

- We can think of experiment 2 (simple cascading) as an approximation to *Viterbi decoding*.
- In particular, experiment 1 gives us the most likely individual tags; but experiment 2 tries to give us the most likely tag sequences.
- Advantage of experiment 2: we can use predictions from both directions
- Disadvantage of experiment 2: it's less principled, and so it can still give unlikely tag sequences.

34

Experiment 3 & Backoff

- We can think of experiment 2 (simple cascading) as an approximation to backoff.
- Combines evidence from different context sizes.
- Less principled than backoff?