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ABSTRACT

ENCODING STRUCTURED OUTPUT VALUES

Edward Loper

Martha Palmer

Many of the Natural Language Processing tasks that we would like to model with

machine learning techniques generate structured output values, such as trees, lists, or

groupings. These structured output problems can be modeled by decomposing them

into a set of simpler sub-problems, with well-defined and well-constrained interdepen-

dencies between sub-problems. However, the effectiveness of this approach depends

to a large degree on exactly how the problem is decomposed into sub-problems; and

on how those sub-problems are divided into equivalence classes.

The notion of output encoding can be used to examine the effects of problem

decomposition on learnability for specific tasks. These effects can be divided into

two general classes: local effects and global effects. Local effects, which influence the

difficulty of learning individual sub-problems, depend primarily on the coherence

of the classes defined by individual output tags. Global effects, which determine

the model’s ability to learn long-distance dependencies, depend on the information

content of the output tags.

Using a canonical encoding as a reference point, we can define additional encod-

ings as reversible transformations from canonical encoded structures to a new set of

encoded structures. This allows us to define a space of potential encodings (and by

extension, a space of potential problem decompositions). Using search methods, we

can then analyze and improve upon existing problem decompositions.

For my dissertation, I plan to apply automatic and semi-automatic methods to

the problem of finding optimal problem decompositions, in the context of three spe-

cific systems (one chunking system and two semantic role labeling systems). Addi-

tionally, I plan to evaluate a novel approach to voting between multiple models when

each model uses a different problem decomposition, which I describe in Chapter 7.
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Chapter 1

Introduction

Supervised machine learning uses training examples to build a model that generalizes

the mapping between an input space and an output space, allowing us to predict

the correct outputs for new inputs. Many of the problems that we would like to

model with machine learning techniques involve structured output values, such as

trees, lists, or groupings. Such problems are especially common in natural language

processing. For example, parsing generates a tree representing the structure of an

input; chunking generates a set of non-overlapping input spans; and semantic role

labelling generates a mapping between input spans and argument labels. But there

are also many examples of problems with structured outputs in other domains. For

example, gene intron detection generates non-overlapping input spans; and scene

reconstruction generates a three dimensional model from one or more input images.

An important characteristic shared by most structured output tasks is that the

number of possible output values is extremely large (or even unbounded). Typically,

the number of possible output values grows exponentially with the size of the input.

This contrasts with classification tasks, where there are a small fixed set of possible

outputs. For classification tasks, it is common to build a separate model for each

output value, describing the corresponding inputs; or to build separate discriminant

functions that distinguish which inputs correspond to pairs of outputs. However,
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Structured OutputInput

Input Structured Output

Sub-Problem Outputs

Direct
Mapping

Decomposed
Mapping

Figure 1.1: Decomposing a Structured-Output Mapping. In problems with
structured outputs, the large number of possible output values usually makes it
impractical to learn the direct mapping from inputs to outputs (top). Instead, the
problem can be decomposed into a set of simpler sub-problems; and the outputs
from those sub-problems can combined to generate a structured output.

these approaches which model each output value separately are clearly impractical

for structured output tasks, where the number of possible output values is often

larger than the size of the training corpus.

Instead of modeling each output value separately, the problem of mapping from an

input to a structured output can be decomposed into a set of simpler sub-problems,

with well-defined and well-constrained interdependencies between sub-problems (Fig-

ure 1.1). Each of these sub-problems generates simple outputs, such as labels, making

it possible to model them directly. In order to alleviate sparse data problems, the

sub-problems are usually divided into groups of “equivalent sub-problems,” which

share training data. Given an input value, the use of well-constrained interdepen-

dencies between sub-problems makes it possible to find a globally optimal solution

to the sub-problems. The individual sub-problem outputs from this globally optimal

2



solution can then be combined to generate a structured output.

The effectiveness of this approach depends to a large degree on how the problem

of structured output prediction is decomposed into sub-problems; and on how those

sub-problems are divided into equivalence classes. This dissertation proposal uses

output encodings as a tool to explore the effect of different problem decompositions

on the ability of the underlying machine learning mechanism to accurately model

the problem domain.

1.1 Output Encodings

An output encoding is an annotation scheme for structured output values, where each

value is encoded as a collection of individual annotation elements. Figures 1.2–1.4

give example output encodings for various tasks. Note that there are a wide variety

of possible output encodings for any output value domain.

We can use output encodings to represent problem decompositions, by establish-

ing a one-to-one correspondence between annotation elements and sub-problems. For

example, in tag-based chunking encodings such as IOB1 and IOB2, each annotation

element (i.e., each tag) corresponds to a single sub-problem. The connections be-

tween the annotation elements represent the well-defined interdependencies between

sub-problems. These connections are used to combine the outputs of sub-problems to

generate the final structured output value. By comparing the effect of different out-

put encodings, we can gain insight into the relationship between the corresponding

problem decompositions.

In addition to specifying how the problem should be decomposed into sub-

problems, we must also specify what method will be used to find the best overall

solution for a given input value. Many techniques have been developed for globally

optimizing various subproblem decomposition types, such as linear chains or tree

structures. Several of the more successful techniques will be discussed in Chapter 2.

3
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Figure 1.2: Example Output Encodings: NP Chunking. This figure shows
six different encodings for the task of finding all “noun phrase chunks” (circled) in
a sentence. Encodings (a)-(e) assign a tag to each word, indicating how that word
is chunked; the meaning of each tag is indicated by the shaded bars. Encoding (f)
uses parentheses to mark chunks. Note that a single-word chunk gets tagged with
both an open and a close parenthesis tag. See 2.2.1 for a more detailed explanation
of these encodings.
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Figure 1.3: Example Output Encodings: Parsing. This figure shows four differ-
ent encodings for the task of parsing a sentence. Structure (a) encodes the parse with
a Treebank-style tree. Structure (b) encodes the parse with a TAG derivation tree
[11]. Structure (c) encodes the parse with a lexicalized tree. Structure (d) encodes
the parse in a structure reflecting the decomposition of Michael Collin’s “Model 2”
parser (see Figure 3.1 for a more detailed explanation of (d)).

5



John gave me his book

John John John
his

John
his

me
me me

book

Figure 1.4: Example Output Encoding: Coreference Resolution. This figure
shows a simplified example of an encoding for a coreference system, based loosely
on Thomas Morton’s coreference system [34]. This system maintains a “discourse
model” (white box), consisting of a set of “entities” (shaded boxes). Each of these
entities contains a set of noun phrases, along with shared features (not shown) such
as number, gender, and semantic type. Noun phrases are processed one-at-a-time,
from left to right; and for each noun phrase, the system decides whether to add the
noun phrase to an existing entity, or to create a new entity for it.

These techniques will form a basis for our exploration of how different problem de-

compositions affect the learnability of the overall problem. But the primary focus of

this proposal is on the effects of different problem decompositions; and not on the

learning methods used for decomposed problems.

1.1.1 Output Encodings as Transformations

Often, there is a canonical encoding associated with a given task or corpus, which

is used to encode both the training and test data for that task or corpus. Using

this canonical encoding as a reference point, we can define new encodings using re-

versible transformations from canonical encoded structures to a new set of encoded

structures. Any reversible transformation defines a valid encoding as long as it is

one-to-one – i.e., each canonical structure must correspond to exactly one trans-

formed structure; and each transformed structure must correspond to exactly one

6



canonical structure. We will make use of this notion of output encoding as trans-

formation to define representations for specific classes of output encodings. For

example, in Chapter 4, we will use finite state transducers to represent encodings of

chunk structures that are based on tag sequences: a transducer defines a tag-based

encoding by specifying the transformed tag sequence corresponding to each canonical

tag sequence.

1.2 The Effects of Transforming Encodings

Transforming the encoding that is used to represent the output values of a task,

and by extension transforming the decomposition of the task into sub-tasks, affects

the accuracy with which machine learning methods can model the task and predict

the correct output values for new inputs. Using the notion of “output encoding,”

I will examine these effects of problem decomposition on learnability, and show

how they can be used to improve system performance by transforming the problem

to a new encoding. These effects can be divided into two general classes: local

effects and global effects. Local effects, which influence the difficulty of learning

individual sub-problems, depend primarily on the coherence of the classes defined

by individual output tags. Global effects, which determine the model’s ability to

learn long-distance dependencies, depend on the information content of the output

tags.

1.3 Structure of this Document

Chapter 2 provides the background for this proposal, including explanations of com-

mon techniques for decomposing a problem into sub-problems. Chapter 3 describes

prior work on the effect of different output encodings, and transformations of output

encodings, on the performance of supervised learning tasks. Chapter 4 introduces

7



a representation for output encodings in chunking problems; and describes several

experiments that use a hill-climbing algorithm to explore the space of possible en-

codings. Chapter 5 shows how transforming the output space used to label semantic

role labels to a more coherent output space can significantly improve performance

and reduce domain specificity. Chapter 6 describes how the selection of appropriate

output encodings can be used to allow a machine learning system to learn con-

straints and long-distance dependencies between different output elements in the

task of semantic role labelling. Chapter 7 describes the issues that arise when we

use voting to combine models that use different output encodings; and describes an

algorithm that can be used to overcome those issues. Chapter 8 presents a method

for adding features to machine learning models that depend on non-local pieces of

output structure. Chapter 9 proposes a set of research tasks to be completed for this

dissertation.

8



Chapter 2

Background

In this dissertation, I will focus on two common tasks which make use of structured

outputs. However, many of the results and approaches I discuss could be generalized

to other related tasks. The tasks I will consider are:

• Chunking : find a set non-overlapping sub-sequences in a given sequence.

• Semantic Role Labelling : identify the semantic arguments of a predicate, and

label each argument’s semantic role.

I will also restrict the scope of my dissertation to the class of machine learning

methods which use dynamic programming to find a globally optimal output value

by combining local sub-problems, where the interactions between sub-problems are

mediated by output values. This class of machine learning methods includes Hidden

Markov Models (HMMs); Maximum Entropy Markov Models (MEMMs); Condi-

tional Random Fields (CRFs); and Probabilistic Chart Parsing. These machine

learning methods are described in Section 2.3.
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2.1 Decomposing Structured Problems

2.1.1 Bayesian Networks

The idea of probabilistically modeling a complex structured problem by breaking

it into simpler sub-problems with well-defined interdependencies originates in large

part from work on Belief Networks and Bayesian Networks [37, 44, 49]. These ap-

proaches begin by describing a given structured problem using a discrete set of

variables, including measured values (inputs), latent variables, and hypothesis vari-

ables (outputs). They then use an acyclic directed graph to encode the probabilistic

dependencies between those variables. Having defined this graph, they can then use

it to answer probabilistic questions about the structured problem.

As an example, consider the task of modelling the following structured problem,

originally described by [37].

A person lives in a house with a burglar alarm, but is currently at work.

Her burglar alarm can be set off by two possible triggers: a burglary at-

tempt or an earthquake. When the alarm does goes off, her two neighbors,

John and Mary, are each fairly reliable about calling her at work.

First, we must describe the structured problem using a set of variables. A natural

choice is the following 5 binary-valued variables: A indicates whether the alarm has

gone off; E and B indicate whether there was an earthquake or burglary attempt

respectively; and J and M indicate whether John or Mary respectively have called.

Note that this is not the only possible decomposition of the problem into variables;

for example, it would be possible to replace the variable A by two variables Aburglary

and Aearthquake, corresponding to the events of a burglary setting off the alarm and

an earthquake setting off the alarm respectively.1

1In fact, it is even possible to use more “unnatural” variable decompositions, such as the follow-
ing: V1 is true iff the alarm goes off or if Mary calls; V2 is true iff Mary calls or there is a burglary;
V3 is true iff there is a burglary and the alarm goes off; V4 is true iff Mary calls and there is an

10



Having decomposed the structured problem into a set of variables, the next step is

to define a graph representing the probabilistic dependencies between those variables.

In order to construct this graph, we first define an ordering over the variables. In

our example, this ordering is primarily motivated by the existence of causality links

between variables. In particular, if a variable x can cause a variable y, then x should

precede y in the ordering. Given this heuristic, we choose the following ordering:

〈B < E < A < J < M〉, respecting the facts that burglaries (B) and earthquakes

(E) can cause the alarm to go off (A), which can in turn cause John or Mary to

call (J or M). Using this variable ordering, we can decompose the joint probability

distribution P (A, B, E, J,M) using the chain rule:

P (A, B, E, J,M) = P (B)P (E|B)P (A|E, B)P (J |A, E, B)P (M |A, E, B, J) (2.1)

We can then simplify this distribution by making several independence assumptions,

again based on the notion of causality:

P (E|B) = P (E) (2.2)

P (J |A, E, B) = P (J |A) (2.3)

P (M |A, E, B, J) = P (M |A) (2.4)

Applying these independence assumptions to our joint distribution from Equation 2.1

yields:

P (A, B, E, J,M) = P (B)P (E)P (A|E, B)P (J |A)P (M |A) (2.5)

Finally, we can represent this decomposition as a graph, with a node for each

variable, and with an edge x → y iff the probability for variable y is conditioned on

variable x.

alarm; V5 is true iff there is a burglary or an alarm; V6 is true if John calls; and V7 is true if there is
an earthquake. However, such “unnatural” decompositions will severely hinder our efforts to find
independencies between variables.
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E

B
A

J

M

Figure 2.1: Bayesian Network For the Alarm Problem. Nodes in this graph
represent variables: A indicates whether the alarm has gone off; E and B indicate
whether there was an earthquake or burglary attempt respectively; and J and M
indicate whether John or Mary respectively have called. Edges represent conditional
dependencies.

2.1.2 Decomposing Structured Output Values

In [7], Collins discusses how the same problem decomposition techniques used to

construct Bayesian networks can be applied to supervised structured learning prob-

lems. In particular, Collins proposes the following process for modelling a structured

output problem:

1. Decomposition. Define a one-to-one mapping between output values and

sequences of decision variables. These decision variables can be thought of as

a sequence of instructions for building the output value.

2. Independence Assumptions. Define the conditional dependency relation-

ships between decision variables. In [7], this is done by defining a function φ

that groups conditioned decision sequences into equivalence classes.

Step (1) corresponds to decomposing a structured problem into a set of variables,

and choosing an ordering for those variables. Step (2) corresponds to making inde-

pendence assumptions between variables, and using those assumptions to simplify

the joint distribution model.

The main difference between simple Bayesian networks and supervised structured

learning problems is that for Bayesian networks, we are working with a fixed graph;

12



but for supervised structured learning problems, we define a separate (but related)

graph for each possible output value. In other words, supervised structured learning

can be thought of as an attempt to model output values using a family of Bayesian

networks, and to choose the most likely Bayesian network for a given input value.

Another important difference between Bayesian networks like the example in Sec-

tion 2.1.1 and supervised structured learning is that there is typically not a natural

notion of causality that we can apply when deciding how to decompose structured

values. However, Collins proposes that we can generalize the notion of causality to

the notion of locality, where the domain of locality of an entity is the set of entities

that it can directly effect. Thus, when deciding how to decompose a structured

output value, we should attempt to maintain structural connections between any

variables that are within each others’ domain of locality. In the case of parsing,

Collins uses this assumption to justify a decomposition based on head-word based

dependencies and subcategorization frames.

2.2 Structured Output Tasks

2.2.1 Chunking

A chunking task is any task that consists of finding some set non-overlapping sub-

sequences in a given sequence. Examples of chunking tasks include named entity

detection, which searches a text for proper nouns; noun phrase chunking, which

identifies non-recursive noun phrase chunks in a sentence; and gene intron detection,

which searches DNA for gene sequences that encode for proteins.

Chunking tasks are typically used as an initial step in a natural language pro-

cessing system, to find entities of interest which can then be examined further. For

example, information extraction systems often use chunking subsystems to find men-

tions of the people and places in a document; after these mentions have been located,

the system can then attempt to determine how they relate to one another.
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In early trading in Hong Kong Monday ...
IOB1 O I I O I I B ...
IOB2 O B I O B I B ...
IOE1 O I I O I E I ...
IOE2 O I E O I E E ...
IOBES O B E O B E S ...

Figure 2.2: Common Chunking Encodings. Five common chunking encodings
for an example sentence, drawn from the Ramshaw & Marcus noun phrase chunking
corpus [43]. See Figure 1.2 for a graphical depiction of this example.

The most common encodings for chunking tasks associate a single tag with each

input token. The most popular chunking encodings for machine learning tasks are

IOB1 and IOB2, both of which make use of the following three tags:

• I: This token is inside (i.e., part of) a chunk.

• O: This token is outside (i.e., not part of) a chunk.

• B: This token is at the beginning of a chunk.

The difference between IOB1 and IOB2 is that IOB2 uses the B tag at the begin-

ning of all chunks, while IOB1 only uses the B tag at the beginning of chunks that

immediately follow other chunks.2 The tag sequences generated by these encodings

for a sample sentence are shown in the first two lines of Figure 2.2.

It should be noted that the set of valid tag sequences for each of these two

encodings does not include all sequences of I, O, and B. In particular, the IOB1

encoding will never generate a tag sequence including the sub-sequence OB; and

IOB2 encoding will never generate a tag sequence including the sub-sequence OI.

However, it is common practice to allow machine learning systems to generate these

technically invalid tag sequences, and to simply “correct” them. In particular, when

using IOB1, the tag sequence OB is corrected to OI; and when using IOB2, the tag

sequence OI is corrected to OB. This is typically the right thing to do, since machine

2Note that an encoding that just used the I and O tags would be incapable of distinguishing two
adjacent one-element chunks from a single two-element chunk.
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learning algorithms are usually more likely to confuse I and B than to confuse O with

I or B.

An alternative chunking encoding that is sometimes used is to mark the chunks’

end tokens instead of their beginning tokens. The IOE1 and IOE2 encodings use the

E tag to mark the final token of chunks. In IOE2, the final token of every chunk is

marked, while in IOE1, the E tag is only used for chunks that immediately precede

other chunks. An example of the tag sequences generated by these two encodings is

shown in Figure 2.2.

Several other chunking encodings have also been proposed. One common variant

is to mark both the beginning and the end of all chunks. Since a single-token chunk is

both the beginning and the end of a chunk, it is given a new tag, S (for “singleton”).

I will refer to this five-tag encoding as IOBES.

2.2.2 Semantic Role Labelling

Correctly identifying semantic entities and successfully disambiguating the relations

between them and their predicates is an important and necessary step for success-

ful natural language processing applications, such as text summarization, question

answering, and machine translation. For example, in order to determine that ques-

tion (1a) is answered by sentence (1b), but not by sentence (1c), we must determine

the relationships between the relevant verbs (eat and feed) and their arguments.

(1) a. What do lobsters like to eat?

b. Recent studies have shown that lobsters primarily feed on live fish, dig for

clams, sea urchins, and feed on algae and eel-grass.

c. In the early 20th century, Mainers would only eat lobsters because the fish

they caught was too valuable to eat themselves.

An important part of this task is Semantic Role Labeling (SRL), where the goal

is to locate the constituents which are arguments of a given verb, and to assign them

appropriate semantic roles that describe how they relate to the verb.
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PropBank

PropBank [36] is an annotation of one million words of the Wall Street Journal

portion of the Penn Treebank II [29] with predicate-argument structures for verbs,

using semantic role labels for each verb argument. In order to remain theory neutral,

and to increase annotation speed, role labels were defined on a per-lexeme basis.

Although the same tags were used for all verbs, (namely Arg0, Arg1, ..., Arg5),

these tags are meant to have a verb-specific meaning.

Thus, the use of a given argument label should be consistent across different uses

of that verb, including syntactic alternations. For example, the Arg1 (underlined)

in “John broke the window” has the same relationship to the verb as the Arg1 in

“The window broke”, even though it is the syntactic subject in one sentence and the

syntactic object in the other.

But there is no guarantee that an argument label will be used consistently across

different verbs. For example, the Arg2 label is used to designate the destination of

the verb “bring;” but the extent of the verb “rise.” Generally, the arguments are

simply listed in the order of their prominence for each verb. However, an explicit

effort was made when PropBank was created to use Arg0 for arguments that fulfill

Dowty’s criteria for “prototypical agent,” and Arg1 for arguments that fulfill the

criteria for “prototypical patient” [13]. As a result, these two argument labels are

significantly more consistent across verbs than the other three. But nevertheless,

there are still some inter-verb inconsistencies for even Arg0 and Arg1.

PropBank divides words into lexemes using a very coarse-grained sense disam-

biguation scheme: two senses are only considered different if their argument labels

are different. For example, PropBank distinguishes the “render inoperable” sense

of “break” from the “cause to fragment” sense. In PropBank, each word sense is

known as a “frame.” Information about each frame, including descriptions of the

verb-specific meaning for each argument tag (Arg0, . . . , Arg5), is defined in “frame

files” that are distributed with the corpus.
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The primary goal of PropBank is to provide consistent general purpose labeling

of semantic roles for a large quantity of coherent text that can provide training data

for supervised machine learning algorithms, in the same way the Penn Treebank

has supported the training of statistical syntactic parsers. PropBank can provide

frequency counts for (statistical) analysis or generation components for natural lan-

guage applications. In addition to the annotated corpus, PropBank provides a lexi-

con which lists, in the frame file for each annotated verb, for each broad meaning, its

“frameset”, i.e., the possible arguments in the predicate and their labels and possible

syntactic realizations. This lexical resource is used as a set of verb-specific guidelines

by the annotators, and can be seen as quite similar in nature to FrameNet, although

much more coarse-grained and general purpose in the specifics.

PropBank’s Relationship to Dependency Parsing

PropBank’s model of predicate argument structures differs from dependency parsing

in that it is applied on a per-verb basis: in dependency parsing, each phrase can be

dependent on only one other phrase; but since PropBank describes each verb in the

sentence independently, a single argument may be used for multiple predicates. For

example, in the following sentence, PropBank would use the phrase “his dog” as the

argument to two predicates, “scouted” and “chasing:”

(2) a. His dog scouted ahead, chasing its own mangy shadow.

b. His dog scouted ahead, chasing its own mangy shadow.

2.3 Sequence Learning Models

Sequence learning models are designed to learn tasks where each output is decom-

posed into a linear sequence of tags. For example, these models can be applied to

chunking tasks that have been encoded using IOB1 or IOB2. Sequence learning mod-

els take a sequence of input values, and must predict the most likely sequence of

17



Output Tags Y = Y1, Y2, ..., Yn

Input Feature Vectors X = X1, X2, ..., Xm

Input Sequence ~x = x1, x2, ..., xT , xi ∈ X

Output Sequence ~y = y1, y2, ..., yT , yi ∈ Y

Figure 2.3: Notation for Sequence Learning.

output tags for that input sequence. In particular, each task instance is of a pair

(~x, ~y), where ~x = x1, x2, ..., xT is a sequence of feature vectors describing the input

value; and ~y = y1, y2, ..., yT is a sequence of output tags, encoding the structured

output value y = encode(~y).3 Models are trained using a corpus of task instances,

by maximizing the likelihood of the instance outputs given their inputs. Models can

then be tested using a separate corpus of task instances, by running them on the

instance inputs, and comparing the model’s outputs to the instance outputs. Eval-

uation metrics for comparing these two output values are discussed in Section 2.3.4.

In this dissertation, I will make use of three sequence learning models: Hidden

Markov Models (HMMs); Maximum Entropy Markov Models (MEMMs); and Lin-

ear Chain Conditional Random Fields (CRFs). These three models share several

characteristics:

1. They are all probabilistic models.

2. They all rely on the Markov assumption, which states that the probability

of a sequence element given all previous elements can be approximated as

the probability of that sequence element given just the immediately preceding

element.4

3. They all use dynamic programming to find the most likely output sequence for

3In general, the length of the input sequence is not required to be equal to the length of the
output sequence; but for the purposes of this dissertation, I will restrict my attention to sequence
learning tasks where len (~x) = len (~y) .

4Or more generally, that the probability of an element given all previous elements can be ap-
proximated as the probability of that sequence element given just the immediately preceding n
elements, for some fixed value of n.
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a given input.

2.3.1 Hidden Markov Models

A Hidden Markov Model (HMM) is a sequence learning model predicated on the as-

sumption that task instances are generated by a discrete Markov process. A discrete

Markov process is a graphical process with a set of N distinct states s1, s2, ..., sN and

M distinct symbols k1, k2, ..., kM . Over time, this process transitions through a se-

quence of states, and simultaneously generates a corresponding sequence of symbols.

HMMs model sequence learning tasks as discrete Markov processes, where states

are used to represent output tags, and symbols are used to represent input feature

vectors. Thus, the probability assigned to a given task instance (~x, ~y) is equal to the

probability that the Markov process transitions through the state sequence ~y while

generating the symbol sequence ~x.

The transition and generation probabilities of a discrete Markov process are fixed,

and do not vary with time. At time t = 1, the process starts in state y1 ∈ S with

probability πy1 . At each time step t, the process transitions from its current state yt

to state yt+1 with probability aytyt+1 . Thus, the probability that the Markov process

generates any given state sequence ~y = (y1, ..., yT ) is given by:

P (~y) = πy1

T−1∏
t=1

aytyt+1 (2.6)

As the Markov process transitions through a sequence of states, it generates a

corresponding sequence of symbols. At each time t, the process generates a single

symbol xt ∈ K with probability byt(xt). Thus, the probability that the Markov

process generates a given task instance (~x, ~y) is:

P (~y, ~x) = πy1

T−1∏
t=1

aytyt+1

T∏
t=1

byt(xt) (2.7)
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Symbol alphabet K = {k1, ..., kM}
Set of states S = {s1, ..., sN}

Generated symbol sequence ~x = (x1, ..., xT ) xt ∈ K, t ∈ {1, 2, ..., T}
State sequence ~y = (y1, ..., yT ) yt ∈ S, t ∈ {1, 2, ..., T}
Output value y = encode(~y)

Initial state probabilities Π = {πs} s ∈ S

State transition probabilities A = {asisj
} si ∈ S, sj ∈ S

Symbol emission probabilities B = {bs(k)} s ∈ S, k ∈ K

Training corpus 〈X, Y 〉 X =
(
~x(1), ~x(2), ..., ~x(N)

)
Y =

(
~y(1), ~y(2), ..., ~y(N)

)
Figure 2.4: Notation for Hidden Markov Models.

y1 y4 y5y2 y3

x1 x2 x3 x4 x5

t=1 t=2 t=3 t=4 t=5

by1 (x1 )

by2 (x2 )

by3 (x3 )

by4 (x4 )

by5 (x5 )

ay1y2 ay2y3 ay3y4 ay4y5πy1

Figure 2.5: HMM as a Bayesian Graphical Model. This figure shows how
HMMs are related to Bayesian Networks. Nodes are used to represent variables:
the nodes marked yt represent the states at each time step; and the nodes marked
xt represent the emitted symbols at each time step. Edges represent statistical
dependencies between variables, and are labeled with probabilities. The length of
the Bayesian Network chain will depend on the length of the individual instance; in
this case, the instance has a length of 5.
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s1

s3s2
as2s3
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as1 s3

as 1
s 2

as 2
s 1

as3 s1

πs2 πs3

πs1

as1 s1

as3 s3as
2s
2

Figure 2.6: HMM as a Finite State Machine. This graphical depiction of an
HMM highlights its relationship to finite state machines. This HMM has three states,
s1, s2, and s3. Arcs are labeled with probabilities: the arcs marked with πi indicate
that the HMM may start in any of the three states, with the given probabilities;
and the arcs between states indicate the probability of transitioning between states.
Symbol emission probabilities are not shown.

HMM Training

HMMs are trained by setting the three probability distributions Π, A, and B based

on a training corpus 〈X, Y 〉. The initial state probabilities Π are initialized by simply

counting how many of the training instances begin with each state s, and dividing

by the total number of training instances:

πs = P̂ (y1 = s) (2.8)

=
count(y1 = s)

N
(2.9)

Similarly, the state transition probabilities A are set by counting how often the

Markov process transitions from state si to sj, and dividing by the total number of

outgoing transitions from state si:

asisj
= P̂ (yt = si, yt+1 = sj) (2.10)

=
count(yt = si, yt+1 = sj)

count(yt = si)
(2.11)
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However, the symbol emission probabilities typically can not be modeled by sim-

ple counting: because there are usually a very large number of possible feature vector

values, these counts would be too low to reliably estimate the distribution. Instead,

the symbol emission probabilities are usually modeled using a generative classifier

model, such as Naive Bayes.

HMM Decoding

Once an HMM has been trained, it can be used to predict output values for new

inputs. In particular, the predicted output value ~y∗ for a given input ~x is simply the

output value that maximizes P (~y|~x):

~y∗ = arg max
~y

P (~y|~x) (2.12)

~y∗ can be computed efficiently using a dynamic programming technique known as

Viterbi decoding. This same technique will also be used to predict output values for

MEMMs and linear chain CRF. First, we will construct a graphical structure called

a Viterbi graph, which combines the HMM’s three probability distributions a, b, and

π, into a single graph. This graph is specific to a single input value ~x; i.e., each

input value ~x will have its own Viterbi graph. Each node in the graph represents an

assignment of a single output tag, as indicated by the node labels; and paths through

the graph represent assignments of output tag sequences. The edges are annotated

with weights that combine the HMM’s three probability distributions, as follows:

vs(1) = πsbs(x1) (2.13)

vsisj
(t) = asisj

bsj
(xt) 2 ≤ t ≤ T (2.14)

Using these edge weights, the probability of an output value ~y is simply the
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Viterbi Graph 〈S, T, Q, E〉
Viterbi Graph Nodes Q = {q0} ∪ {qt,s : 1 ≤ t ≤ T ; s ∈ S}
Viterbi Graph Edges E = {〈q0 → q1,s〉 : s ∈ S}∪

{〈qt−1,s → qt,s′〉 : s ∈ S; t ∈ T}
Viterbi Graph Edge Weights vs(1) = weight (q0 → q1,s)

vss′(t) = weight (qt−1,s → qt,s′)

Max Forward Scores δs(t)

Max Backward Scores φs(t)

Figure 2.7: Notation for Viterbi Graphs.
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Figure 2.8: Viterbi Graph. This graphical structure is used for decoding, or finding
the most likely output value, in HMMs, MEMMs, and linear chain CRFs. Each node
qt,si

represents an assignment of a single output tag yt = si. Edges are annotated
with weights, such that the score of an output value is equal to the product of edge
weights in the corresponding path. Using dynamic programming, we can find the
output value that maximizes this score.
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product of the edge weights in the corresponding path:

P (~y, ~x) = πy1

T−1∏
t=1

aytyt+1

T∏
t=1

byt(xt) (2.15)

= (πy1by1(x1))

(
T∏

t=2

ayt−1ytbyt(xt)

)
(2.16)

= vy1(1)
T∏

t=2

vyt−1yt(t) (2.17)

In order to find the output value ~y∗ that maximizes this probability, we use a

dynamic programming algorithm based on a new variable δs(t), known as the max

forward score5:

δs(1) = vs(1) (2.18)

δs(t) = maxs′δt−1(s
′)vs′s(t) 1 < t ≤ T (2.19)

This variable contains the score of the highest scoring path from the start node

q0 to the node qt,s (where a path score is the product of edge weights in that path).

We can find the highest scoring path (and thus the most likely output value) by

backtracking through the graph and maximizing over δs(t):

y∗T = arg max
s

δs(T ) (2.20)

y∗t = arg max
s

δt(s)vs~y∗t+1
(t) 1 ≤ t < T (2.21)

We will also define the max backward score φs(t) to contain the score of the

highest scoring path from the node qt,s to the end of the graph.

φs(T ) = 1 (2.22)

φs(t) = maxs′vss′(t + 1)φt+1(s
′) 1 ≤ t < T (2.23)

Thus, the score of the highest scoring path that passes through node qt,s is δs(t)φs(t).

5I use the term score rather than probability because Viterbi graphs do not always encode
probabilities (e.g., in CRFs)
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2.3.2 Maximum Entropy Markov Models

Maximum Entropy Markov Models (MEMMs) are very similar in structure to HMMs.

They differ in that the HMM state transition and symbol emission distributions

are replaced by a Maximum Entropy (ME) model. This model is used to find the

probability that the output value contains a specified state, given the previous state

and the current input value:

P (yt|yt−1, xt) (2.24)

This distribution is modelled using an exponential model combining weighted fea-

tures of xt, yt, and yt−1:

P (yt|yt−1, xt) =
1

Z
exp

(∑
a∈A

λafa(xt, yt, yt−1)

)
(2.25)

Where A is the set of feature identifiers, fa are feature functions, λa are learned

feature weights, and Z is a normalizing constant.

Alternatively, the probability distribution (2.24) can be modelled using a sepa-

rately trained model for each value of yt−1:

P (yt|yt−1, xt) = Pyt−1(yt|xt) =
1

Z
exp

 ∑
a∈Ayt−1

λafa(xt, yt)

 (2.26)

A significant advantage of MEMMs over HMMs is that they do not rely on the

assumption that all features are mutually independent. Additionally, features may be

defined that combine information about the current input value xt and the previous

output tag yt−1.

MEMM Training

MEMMs are trained by building the underlying Maximum Entropy model or models.

These models can be trained using a wide variety of optimization methods, such as

iterative scaling methods (GIS, IIS) and conjugate gradient methods [31].
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Figure 2.9: MEMM as a Bayesian Graphical Model. This figure shows how
MEMMs are related to Bayesian Networks. Nodes are used to represent variables:
the nodes marked yt represent the states at each time step; and the nodes marked
xt represent the emitted symbols at each time step. Edges represent statistical
dependencies between variables. The length of the Bayesian Network chain will
depend on the length of the individual instance; in this case, the instance has a
length of 5.

MEMM Decoding

MEMM decoding is very similar to HMM decoding. In particular, we can find the

most likely output value ~y∗ for a given input ~x by applying the Viterbi algorithm

(described in Section 2.3.1) to a Viterbi graph with the following edge weights:

vs(1) = P (s|x1) =
1

Z
exp

(∑
a

λafa(x1, s)

)
(2.27)

vsisj
(t) = P (sj|si, xt) =

1

Z
exp

(∑
a

λafa(xt, sj, si)

)
2 ≤ t ≤ T (2.28)

MEMMs (and linear chain CRFs, described in the next section) differ from HMMs

in two important ways:

• MEMMs (and linear chain CRFs) model the conditional distribution P (~y|~x)

directly, rather than deriving this conditional distribution from a model of

the generative distribution P (~y, ~x). As a result, the model has fewer free

parameters, which may make it less susceptible to over-fitting.

• Because MEMMs (and linear chain CRFs) are conditional models, their fea-

tures may depend on the entire input value ~x, rather than just the local input
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Figure 2.10: Linear Chain CRF as a Bayesian Graphical Model. This figure
shows how Linear Chain CRFs are related to Bayesian Networks. Nodes are used
to represent variables: the nodes marked yt represent the states at each time step;
and the nodes marked xt represent the emitted symbols at each time step. Edges
represent statistical dependencies between variables. The length of the Bayesian
Network chain will depend on the length of the individual instance; in this case, the
instance has a length of 5.

value xt.

2.3.3 Linear Chain Conditional Random Fields

Linear chain Conditional Random Fields (CRFs) are similar to both HMMs and

MEMMs in their basic structure. The main difference between linear chain CRFs

and MEMMs is that linear chain CRFs use a single globally normalized model for

the entire input, rather than using a locally normalized models for each point in

the Viterbi graph. This helps to prevent the “label bias problem,” which can cause

MEMMs to give a high score to a state transition even if the model knows that the

transition is quite unlikely.

The conditional probability distribution defined by a linear chain CRF is:

P (~y|~x) =
1

Z(x)
exp

(
T∑

t=1

∑
a∈A

λafa(~x, yt, yt−1, t)

)
(2.29)

Where A is the set of feature identifiers, fa are feature functions, λa are learned

feature weights, and Z(x) is an input-specific normalizing constant.
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Linear Chain CRF Training

Linear Chain CRFs are trained using a wide variety of optimization methods, such

as iterative scaling methods (GIS, IIS) and conjugate gradient methods [51]. These

methods all attempt find the set of weights that maximize the log-likelihood of a

given training corpus (~xk, ~y)k
N
k=1:

λ∗ = arg min
λ

(∑
k

pλ(~yk|~xk)

)
(2.30)

= arg min
λ

(∑
k

[λ · F (~yk, ~xk)− logZλ(~xk)]

)
(2.31)

Linear Chain CRF Decoding

As with HMMs and MEMMs, decoding is performed by constructing a Viterbi graph

capturing the likelihood scores for a given input, and using the Viterbi algorithm to

find the most likely input. For Linear chain CRFs, we set the Viterbi graph edge

weights as follows:

vs(1) = exp

(∑
a∈A

λafa(~x, y1, 1)

)
(2.32)

vsisj
(t) = exp

(∑
a∈A

λafa(~x, yt, yt−1, t)

)
2 ≤ t ≤ T (2.33)

Two things are worth noting about this Viterbi graph definition. First, unlike the

Viterbi graphs for HMMs and CRFs, individual edges in the graph do not correspond

to any probabilistic value; it is only when we combine a complete path through the

graph that arrive at a meaningful score. Second, the normalization factor Z(~x) is

not included in the Viterbi graph. Thus, if we want to find the predicted probability

of a particular output value, we would need to adjust the path’s score by dividing

by Z(~x):
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P (~y|~x) =
1

Z(x)
vy1(1)

T∏
t=2

vyt−1yt(t) (2.34)

But since we’re generally only interested in determining the highest scoring out-

put value ~y∗, and since Z(~x) is constant across all values of ~y for a given ~x, we

typically don’t need to compute Z(~x):

~y∗ = arg max
vecy

P (~y|~x) (2.35)

= arg max
vecy

1

Z(x)
vy1(1)

T∏
t=2

vyt−1yt(t) (2.36)

= arg max
vecy

vy1(1)
T∏

t=2

vyt−1yt(t) (2.37)

2.3.4 Evaluating Sequence Models

A number of different metrics can be used to evaluate the performance of a sequence

modelling system. All of these metrics assume the existence of a test corpus 〈X, Y 〉,

where X =
(
~x(1), ~x(2), ..., ~x(N)

)
is a list of input values, and Y =

(
~y(1), ~y(2), ..., ~y(N)

)
is a list of the corresponding output values. I.e., the correct output for ~x(i) is ~y(i). In

order to evaluate a given system, we will use that system to predict the most likely

output value ~̂y
(i)

for each input ~x(i); and then compare those predicted output values

to the correct output values.

The simplest metric computes the accuracy over corpus instances:

accinstance(〈X, Y 〉, Ŷ ) =
count

(
~y(i) = ~̂y

(i)
)

N
(2.38)

However, this metric is not often used, because it does not give any partial credit to

“mostly correct” solutions. In particular, all incorrect outputs are treated the same,

whether they differ from the correct output in one tag or in all tags. Therefore, a
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more common metric is to evaluate the accuracy over tags in the corpus:

acctag(〈X, Y 〉, Ŷ ) =
count

(
y

(i)
t = ŷt

(i)
)

count
(
y

(i)
t

) (2.39)

But one disadvantage of evaluating system based on individual tags is that it

removes some of the incentive to find outputs that are globally plausible. For exam-

ple, optimizing a part-of-speech tagger for acctag may result in a sequence of part-of-

speech tags that are plausible when examined individually, but highly unlikely when

taken as a whole.

A middle-ground between accinstance and acctag is possible for tasks where a sys-

tem’s output can be thought of as a set of elements. For example, the chunking task

can be thought of as producing a set of chunks, each of which is uniquely defined by a

span of words in the sentence. In such tasks, we can evaluate systems by comparing

the set of elements generated by the system, elements(~̂y
(i)

), to the correct set of

elements for that input, elements(~y(i)).

precision =
count(elements(~y(i)) ∪ elements(~̂y

(i)
))

count(elements(~̂y
(i)

))
(2.40)

recall =
count(elements(~y(i)) ∪ elements(~̂y

(i)
))

count(elements(~y(i)))
(2.41)

Precision evaluates how many of the predicted elements are correct elements; and

recall evaluates how many of the correct elements were generated. A final metric,

Fα, combines these two scores by taking their weighted harmonic mean:

Fα =
(1 + α) · precision · recall

α · precision + recall
(2.42)

(2.43)
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Chapter 3

Prior Work

3.1 Encoding Classification Output Values

In classification tasks, a model must learn to label each input value with a single tag,

drawn from a fixed tag set. Thus, the set of possible output values is relatively small,

when compared with structured output tasks. There have been a number of attempts

to improve performance of classification models by transforming the representation

of these output tags.

3.1.1 Error Correcting Output Codes

One such attempt is Error Correcting Output Codes (Dietterich & Bakiri, 1995),

which decomposes a single classification task into a set of subtasks that are imple-

mented by base learners [10]. Each of these base learners is trained to distinguish

different subsets of output values. The output of these individual base learners is

then combined in such a way that the correct output tag will be generated even if

one or two of the base learners makes an incorrect prediction.

In particular, if we encode the outputs of the individual learners as bit strings,

indicating which value each individual learner picked, then we can assign a class to

a new value by choosing the class whose bit string most closely matches the output
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for that new value. In order to maximize the robustness of this system, Dietterich &

Bakiri use problem decompositions that maximize the minimum Hamming distance

between any two class’s bit strings. In other words, the classifiers are defined in a

way that maximizes the number of classifiers that would need to generate incorrect

outputs before the overall output would be incorrect. For example, (Dietterich &

Bakiri, 1995) define a system for identifying hand-written numbers (0-9) using 15 sub-

problems, each of which distinguishes a different subset of the digits. By maximizing

the Hamming distance between the class’s bit strings, Dietterich & Bakiri ensure

that at least 3 separate classifiers would need to generate incorrect outputs for the

overall system to assign the wrong class.

3.1.2 Multi-Class SVMs

Another line of work that has examined different ways to decompose a multi-way

classification into subproblems comes from work on binary classifiers. For example,

by their nature SVMs are restricted to making binary classification decisions. In

order to build a multi-way classifier with SVMs, the multi-way classification problem

must first be decomposed into a set of binary classification decision subproblems.

SVM models can then be trained for each of these subproblems; and the results

combined to generate the final result. Most recent studies have not found much

difference between the two most common problem decompositions: 1-vs-all, where a

classifier is built for each output tag, that distinguishes that tag from all other tags;

and 1-vs-1, where a classifier is built for each pair of output tags. Therefore, most

people use 1-vs-1, since it is faster to train. [14, 20]

3.1.3 Mixture Models

Mixture models can be thought of as performing an implicit form of problem sub-

division. The motivation for these models comes from the realization that a single

parametrized (Gaussian) distribution may not be sufficiently complex to accurately
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model an underlying distribution. Instead, mixture models assume that the underly-

ing distribution is generated by a generative process where first some class is chosen

randomly, and then the output is generated by a per-class distribution. Thus, there

is an implicit assumption that the problem is best modelled as being decomposed

into a set of sub-problems (the individual distributions). This approach increases

performance by replacing a single distribution that has low internal consistency with

a small set of distributions that have higher internal consistency; thus, it is related

to transformations on output representations that replace a single class tag with a

set of more specific tags. However, it differs in that the set of intermediate classes is

not explicitly specified or modelled; instead, Expectation Maximization is generally

used to pick a set of intermediate classes that maximize the model’s accuracy on a

training data set. [1, 9]

3.2 Output Encodings for Structured Output Tasks

3.2.1 Chunking Representations

The Noun Phrase chunking task was originally formulated as a sequence tagging

task by Ramshaw & Marcus [43]. Since then, there have been several attempts to

improve performance by using different output representations.

The first comparison of the effect of different output encodings on chunking per-

formance was performed by Sang & Veenstra. In [53], Sang & Veenstra adapted a

memory-learning NP chunker to use seven different output encodings, including four

of the five encodings described in Section 2.2.1 (IOB1, IOB2, IOE1, IOE2) and three

encodings that combine the output of two independent learners. Sang & Veenstra

found that the IOB1 encoding consistently outperformed the other encodings, al-

though the difference in F-score performance was fairly minor. However, there were

more substantial differences in the precision vs recall trade-off, suggesting that the

optimal encoding might depend on the relative value of precision and recall in a
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given task.

This work was built upon by Sang (2000) [45], which used voting to combine the

output of five different chunkers, each using a different output encoding. The basic

model used for each individual chunker was a memory-based classifier, IB1IG [8]. The

five encodings used were IOB1, IOB2, IOE1, IOE2, and IOBES. Nine different voting

methods were tried, but they all yielded similar results, so Sang used the simplest

method, majority voting, to present his results. Under this voting method, the best

output of each of the five base taggers is converted back into a common encoding

(IOB1), and then the final encoding tag for each word is chosen individually, using

majority voting. Sang evaluated his system on the NP chunking task, and achieved

an increase in F-score from 92.8 to 93.26.

Kudo & Matsumoto (2001) [26] carried out a similar experiment, but used Sup-

port Vector Machines (SVMs) as the underlying model. They used the same five

encodings that were used in Sang (2000), but also added a reversed version of each

of these encodings, where the system ran backwards through the sentence, rather

than forwards. This gave a total of ten basic encodings. They also used a weighted

voting scheme, with weights determined by cross-validation. Using this system, they

were able to improve performance to 94.22.

Shen & Sarkar [48] also built a voting system based on the five encodings defined

by Sang (2000). The model used for the basic chunkers was a second-order HMM,

where the output tags were augmented with part of speech and limited lexical infor-

mation. Voting was performed by converting each of the five taggers’ best output

back into a common encoding (IOB1), and combining those five tag sequences us-

ing majority voting. Shen & Sarkar evaluated their system on NP chunking and

CoNNL-2000 data sets. They achieved an increase in F-score on the NP chunking

corpus from 94.22 to 95.23. They also pointed out that their model trains much

faster than the SVM-based system built by Kudo & Matsumoto.
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3.2.2 Semantic Role Representations

Traditionally, the arguments of a verb have been labelled using thematic roles, which

were first introduced in the mid 1960s [18, 15, 21]. Each thematic role specifies the

nature of an argument’s relationship with the verb. For example, the agent role

specifies that an argument is the active instigator of the verb’s action or event. There

have been many proposed sets of thematic roles, but there remains little consensus

about which set of thematic roles should be used.

Dowty points out that when most traditional thematic role labels are examined

closely, they do not appear to be entirely consistent; each of the roles can be subdi-

vided in various ways into more specialized roles [12]. Dowty therefore proposes a

weaker definition of thematic roles, where discrete roles are replaced by a set of se-

mantic properties that a role might have [13]. These semantic properties are divided

into those which make an argument act more like a “typical agent”, and those that

make an argument act more like a “typical patient.” If an argument has more agent-

like properties, it is called a Proto-Agent ; and if it has more patient-like properties,

it is called a Proto-Patient.

The difficulty in finding consensus for a single set of thematic roles was one of the

motivations behind defining PropBank to use verb-specific roles [36]. By defining a

separate set of thematic roles for each verb, the PropBank project could avoid the

pitfalls of trying to determine when two different verbs’ arguments were fulfilling the

“same” role, while leaving the door open for future work attempting to do just that.

In Chapter 5, I will discuss how a mapping from PropBank to VerbNet was used to

replace PropBank’s verb-specific roles with VerbNet’s more general thematic roles,

and thereby increase SRL performance.

Modelling SRL

Many researchers have investigated using machine learning for the Semantic Role

Labeling task since 2000 [6, 16, 19, 35, 56, 41, 42, 54]. For two years, the CoNLL
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workshop has made this problem the shared task [3, 4]. Most existing systems use a

series of independent classifiers. For example, many systems break the Semantic Role

Labeling task into two sub-tasks, using one classifier to locate the arguments, and a

second classifier to assign role labels to those arguments. One disadvantage of using

independent classifiers is that it makes it difficult to encode hard and soft constraints

between different arguments. For example, these systems can not capture the fact

that it is unlikely for a predicate to have two or more agents; or that it is unlikely for

a theme (Arg1) argument to precede an agent (Arg0) argument if the predicate uses

active voice. Recently, several systems have used methods such as re-ranking and

other forms of post-processing to incorporate such dependencies [17, 39, 52, 50, 54].

Transforming SRL Representations

To my knowledge, there is no prior work on applying transformations to SRL repre-

sentations in order to improve SRL performance.

3.2.3 Parse Tree Representations

Much of the prior research on using output encoding transformations to modify the

structure of probabilistic models comes from the parsing community.

Decoupling Tree Structure from Model Structure

The early work on probabilistic parsing focused on PCFGs, which assign a probability

to each rule in a CFG, and compute the probability of a parse as the product of

the probabilities of the rules used to build it. Mark Johnson points out that this

framework assumes that the form of the probabilistic model for a parse tree must

exactly match the form of the tree itself [22]. After showing that this assumption

can lead to poor models, Johnson suggests that reversible transformations can be

used to construct a probabilistic model whose form differs from the form of the

desired output tree. He describes four transformations for prepositional-attachment
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structures, and evaluates those transformations using both a theoretical analysis

based on toy training sets, and an empirical analysis based on performance on the

Penn Treebank II.

Two of these transformations result in significant improvements to performance:

flatten and parent. The flatten transformation replaces select nested tree struc-

tures with flat structures, effectively weakening the independence assumptions that

are made by the original structure. The parent transformation augments each node

label with the node label of its parent node, allowing nodes to act as “communi-

cation channels” to allow conditional dependency between a node and its grand-

parent node. Both of these transformations result in a weakening of the model’s

independence assumptions, while increasing the number of parameters that must be

estimated (because they result in a larger set of possible productions). Thus, they

can be thought of as an example of the classical “bias versus variance” trade-off.

Johnson’s empirical results show that, in the case of these two transformations, the

reduction in bias overcomes the increase in variance.

Collins’ Head-Driven Statistical Parser

In his dissertation, Collins builds on the idea that the structure of a parser’s out-

put should be decoupled from the probabilistic model used to generate it [7]. In

particular, Collins presents a history-based parser that decomposes parse trees into

a sequence of “decisions” that preserve specific linguistically motivated lexical and

non-lexical dependencies. In Collins’ “Model 2” parser, there are four decision types:

1. Start. Choose the head-word for the sentence.

2. Head projection. Build the spine of a tree.

3. Subcategorization. Generate a phrase’s complements and adjuncts.

4. Dependency. Choose the head word for a complement or an adjunct.

Although Collins describes his parser in terms of a history-based sequence of

decisions, it can also be thought of as a complex tree transformation. In particular,
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Figure 3.1 gives an example showing how Collins’ “Model 2” parser can be expressed

as a transformation from the canonical Treebank-style encoding to a new encoding

that introduces additional structure. Each node in this transformed tree corresponds

to a decision variable in Collins’ model. Under this transformed encoding, Collins’

“Model 2” parser can implemented as a PCFG.1

Collins argues that two particularly important criteria for deciding how to decom-

pose a structured problem are discriminative power and compactness. The discrim-

inative power of a decomposition reflects whether its local subproblems’ parameters

include enough contextual information to accurately choose the correct decision.

Collins points out that simple PCFGs fail in this respect, because they are insensi-

tive to lexical and structural contextual information that is necessary to make correct

local decisions. The compactness of a decomposition measures the number of free

parameters that must be estimated. The more parameters a model has, the more

training data will be required to accurately train those parameters. Thus, given two

models with equal discriminative power, we should prefer the more compact model.

In order to ensure that a model has sufficient discriminative power, Collins sug-

gests that the notion of locality should be used to determine what the dependen-

cies should be between local subproblems. In particular, the decomposition should

preserve structural connections between any variables that are within each others’

domain of locality. As was discussed in Section 2.1.2, Collins argues that this no-

tion of locality is a generalization of the notion of causality from work on Bayesian

Networks.

1Collins’ model makes use of linear interpolated backoff to reduce the adverse effect of data
sparsity. In order to accurately implement Collins’ parser, the PCFG would need to implement
these backoff methods, along with a number of additional transformations that have been glossed
over here. See [7] and [2] for a more detailed account.
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Figure 3.1: Collins’ “Model 2” Parser as Tree Transformation. This figure
illustrates how Collins’ Parser can be modelled using the notion of encoding trans-
formation. The structure (a) shows the canonical parse tree encoding for a simple
example sentence. The structure (b) shows an encoding of the same parse tree that
reflects Collins’ choice of decomposition for the parsing problem. The elliptical node
“S(bought)” corresponds to the start decision, and consists of a phrase label (“S”)
and a head word (“bought”). The square white nodes correspond to head projec-
tion decisions; each contains the phrase label, headword, and parent’s phrase label
for a single constituent. The shaded nodes corespond to subcategorization deci-
sions; each contains a phrase label, a parent phrase label, a headword, a direction,
a distance metric, and a set of sub-categorized arguments. The black circle nodes
represent STOP tokens for the sub-categorization frames. The octagonal white nodes
correspond to dependency decisions, and select head words for complements and
adjuncts. See [7, 2] for more information about Collins’ parser.
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Analysis of Collins’ Parser

Daniel Bikel provides a detailed analysis of Collins’ parser, which provides some

insight into which aspects of its decomposition are most beneficial to performance

[2]. This analysis is based upon a flexible re-implementation of Collins’ parser, which

can be used to turn various features of Collins’ parser on and off, and to tweak them

in different ways. Bikel evaluates the impact of individual features of Collins’ parser

by looking at how performance changes when those features are turned off in different

combinations.

Bikel begins by describing a large number of previously unpublished details. Al-

though these details have a significant joint effect on the parser’s performance (11%

error reduction), their individual contributions are relatively small.

He then analyzes the effect of three features thought to be important to the per-

formance of Collins’ parser: bi-lexical dependencies, choice of lexical head words,

and lexico-structural dependencies. Somewhat surprisingly, he finds that the per-

formance drop caused by omitting bi-lexical dependencies is relatively minor. He

explains this small drop by showing that the bi-lexical dependencies seen in a new

sentence are almost never present in the training corpus; in other words, the training

corpus is too small for these very sparse features to be much help. Bikel also finds

that the the head-choice heuristics do not have a major impact on performance.

However, he finds that the use of lexico-structural dependencies (i.e., dependencies

between a lexical word and a structural configuration) is quite important. Unlike bi-

lexical dependencies, these lexico-structural dependencies are associated with enough

training data to make them useful for evaluating novel sentences. And as has been

shown before, lexical information is often important in making structural decisions,

such as the decision of whether a prepositional phrase should attach at the verb

phrase or noun phrase level.

40



Splitting States to Improve Unlexicalized Parsing

Although the introduction of lexico-structural dependencies is clearly very important

to the performance of advanced lexicalized parsers, they are by no means the only

reason that these parsers out-perform naive PCFG parsers. In order to explore which

non-lexical dependencies are important to improving parser performance, Klein &

Manning applied a manual hill-climbing approach to develop a sequence of tree

transformations that improve upon the performance of a baseline PCFG system

[23]. Using this method, they find a sequence of 17 transformations that increases

the performance of their unlexicalized parser to a level comparable to that of basic

lexicalized parsers.

Their baseline system differs from a simple PCFG in that it begins by decom-

posing all nodes with a branching factor greater than 2 into binary branching nodes.

This binary branching decomposition is centered on the head node; and new node

labels are created for the intermediate nodes. These new node labels, which Klein

& Manning refer to as “intermediate symbols,” initially consist of the original node

label plus the part of speech of the head word; but they may be modified by trans-

formation operations, as described below.

All of Klein & Manning’s transformations consist of splitting select node la-

bels into two or more specialized labels. The first two transformations relax the

conditional independence assumptions of the simple PCFG model by adding con-

textual information about a node’s parents or siblings to that node’s label. The

first of these transformations, vertical-markovization(n), augments each non-

intermediate node label with the labels of its n closest ancestor nodes. This is

essentially a generalization of Mark Johnson’s parent transformation. The second

transformation, horizontal-markovization(n), is analogous, except that it applies

to intermediate nodes, and thus adds information about siblings instead of ances-

tors. Klein & Manning also consider a variant of these transformations which does

not split intermediate states that occur 10 or fewer times in the training corpus.
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For their overall system, they settle on a value of n = 2 for both Markovization

transformations.

Klein & Manning describe fifteen additional transformations, which split node

labels based on a variety of contextual features, including both “internal context”

(features of the phrase itself) and “external context” (features of the tree outside

the phrase). Individually, these transformations improve F1 performance by be-

tween 0.17% and 2.52%; in total, performance is improved by 14.4%, from 72.62%

to 87.04%.

A Factored Parsing Model

Klein and Manning describe a novel model for parsing that combines two different

encodings for the parse tree: a simple PCFG, and a dependency structure [25, 24].

These two encodings are modelled independently, and then their probabilities are

combined by simple multiplication. In other words, if T is a tree, and τPCFG and

τdep are encoding functions mapping trees to PCFGs and dependency structures

respectively, then Klein and Manning model the probability of a tree T as:

P (T ) = P (τPCFG(T )) P (τdep(T )) (3.1)

This decomposition is consistent with the common psycholinguistic belief that syntax

and lexical semantics are two relatively decoupled modules, with syntax responsi-

ble for constraining the set of acceptable structural configurations independent of

individual lexical items, and lexical semantics responsible for resolving ambiguities.

Figure 3.2 illustrates how this factored model can be represented as an output en-

coding transformation.

As Klein and Manning point out, this decomposition assigns probability mass

to invalid output structures. In particular, since the two sub-models are entirely

independent, there is nothing to prevent them from building structures with different

terminal strings. Klein and Manning suggest that this problem could be alleviated by
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Figure 3.2: Klein & Manning’s Factored Model as a Tree Transformation.
Klein and Manning’s factored parsing model P (T, D) = P (T )P (D) can be thought of
as a tree transformation that replaces the canonical structure (a) with a new struc-
ture (b) that describes the sentence’s structure using two separate (disconnected)
pieces: one describing the sentence’s PCFG structure, and the other describing its
dependency structure.

discarding all inconsistent outputs, and re-normalizing the remaining probabilities to

sum to one. However, a more principled solution might be switching from generative

models to conditional models. In particular, Equation 3.1 could be replaced by the

following conditional variant, where S is the input sentence:

P (T |S) = P (τPCFG(T |S)) P (τdep(T |S)) (3.2)

Since both models are conditioned on S, they can no longer generate incompatible

terminal strings.2

Using their factored model, Klein and Manning show that it is possible to perform

efficient exact search using an A* parser. The A* algorithm provides guidance to a

search problem by making use of an estimate of the cost of completing a given search

2This move to conditional models solves the problem of incompatible terminal strings, but ap-
plying the two models independently may still generate incompatible structures. In particular,
dependency structures impose constraints on the set of possible phrase bracketings; and those con-
straints are not always compatible with all possible PCFG trees. This issue could be addressed by
the renormalization trick proposed by Klein and Manning, or by adding a limited set of dependen-
cies between the two models.

43



path. If this estimate provides a lower bound on the cost, then the A* algorithm is

guaranteed to find the optimal search path. In the context of bottom-up parsing,

search paths correspond to phrase structures, and the cost of completing a search

path is inversely related to the maximal “outside probability” of a given phrase

structure α:

Poutside(α) = max
T :α∈T

P (T )− P (α) (3.3)

Because the two factored models proposed by Klein and Manning are individually

relatively simple, it is possible to calculate the outside probability for these individual

models analytically. These two outside probabilities can then be combined to form

an estimate of the outside probability in the joint model by simply multiplying them:

Poutside(α) ≤ Poutside (τPCFG(α)) Poutside (τdep(α)) (3.4)

Using this estimate for the outside probability, Klein and Manning show that

an A* parser using their factored model performs comparably to existing lexicalized

parsers that use a joint model to learn lexical and structural preferences.

Automatic State Splitting: PCFG with Latent Annotations

The approaches discussed thus far improve parsing performance over simple PCFGs

by applying problem decompositions that do not directly follow the structure of the

parse tree. Each of these approaches uses a fixed decomposition, motivated by a

combination of theoretical considerations and trial-and-error. Matsuzaki, Miyao, &

Tsujii examine the possibility of automating the task of choosing an optimal problem

decomposition [30]. They restrict their attention to the class of problem decompo-

sitions that is formed by augmenting PCFG nodes with discrete feature values (or

latent annotations). These decompositions effectively transform the canonical parse

tree by subdividing the existing phrase types (NP, PP, etc) into sub-types.

This transformation differs from most of the transformations discussed so far in
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that it does not define a one-to-one mapping between canonical values and trans-

formed values. In particular, if n discrete feature values are used to augment canoni-

cal trees, then a canonical tree with m nonterminal nodes corresponds to nm different

augmented trees (one for each possible assignment of feature values to nodes). As a

result, applying standard parsing algorithms to the augmented PCFG will generate

the most likely annotated tree; but this does not necessarily correspond to the most

likely unannotated (canonical) tree. Matsuzaki, Miyao, & Tsujii therefore explore

the use of three different variants on the CKY parsing algorithm which approximate

the search for the best unannotated tree.

Starting with a PCFG grammar and a fixed set of feature values, Matsuzaki,

Miyao, & Tsujii apply the Expectation Maximization algorithm to iteratively im-

prove upon the PCFG’s transition probabilities. As a result, the PCFG automati-

cally learns to make use of the feature values in such a way that the likelihood of the

training corpus is maximized. Using their approximate-best parsing algorithms on

the PCFG generated by EM, Matsuzaki, Miyao, & Tsujii’s parser achieves perfor-

mance comparable to unlexicalized parsers that make use of hand-crafted problem

decompositions.

Automatic State Splitting: Splitting Individual Nodes

Petrov, Barrett, Thibaux, & Klein [38] use an automatic approach to tree annotation

that is similar to the approach taken by Matsuzaki, Miyao, & Tsujii. But their

approach differs from the approach taken by Matsuzaki et al in that they split

various nonterminals to different degrees, as appropriate to the actual complexity

in the data. For example, their system finds that the preposition phrase tag (PP)

should be split into 28 distinct categories, while just 2 categories are sufficient to

model conjunction phrases (CONJP).

Another important difference between their system and the PCFG-LA system de-

scribed by Matsuzaki et al is that node decompositions are performed incrementally,

45



via binary splits. This incremental approach gives rise to a tree of node labels which

are much more amenable to linguistic interpretation than the categories generated

by the PCFG-LA system.

The learning algorithm for this system begins with the original set of PCFG

labels. It then iteratively performs three steps: split, EM, and merge. The split

step divides each node label into two new labels; and divides the probability mass

of the associated PCFG productions between these new labels. In order to break

the symmetry between the new labels, a small amount of randomness is added to

the PCFG production probabilities. The EM step uses Expectation Maximization

to learn probabilities for all rules by optimizing the likelihood of the training data.

The merge step then examines each split that was made, and estimates what the

effect would be of removing the split. If the effect is small enough, then the two

split nodes are merged back together. This merge operation can be thought of as

analogous to the pruning step in the construction of decision trees, where decision

structures that do not significantly improve performance are pruned away to reduce

the number of parameters that the model must learn, thereby avoiding over-fitting.

This split-merge procedure is used because it is much easier to estimate what the

effect of a merge will be than it is to estimate what the effect of a split will be.

Like the PCFG-LA system, this system does not define a one-to-one mapping

between canonical values and transformed values: a single canonical tree will corre-

spond to a relatively large set of annotated trees. As a result, calculating the best

unannotated tree for a given sentence is NP-hard. Petrov et al therefore perform

parsing using an algorithm that maximizes the total number of correct productions,

rather than the probability of the unannotated parse.
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Chapter 4

A Hill Climbing Algorithm for

Optimizing Chunk Encodings

Chunking is the task of finding a set of non-overlapping sub-sequences in a given

sequence. In this chapter, we will explore how the use of different tag-based encodings

for chunk outputs affects the ability of sequential learning models to learn chunking

tasks. Section 4.1 shows how finite state transducers can be used to represent tag-

based encodings of chunk outputs, and discusses the properties that such transducers

must have. Section 4.2 defines various transformations that can be used to modify

existing encodings, and Sections 4.3 and 4.4 show how those transformations can be

used to improve the encoding used for chunking.

4.1 Representing Chunk Encodings with FSTs

As was discussed in Chapter 1, output encodings can be defined using reversible

transformations with respect to a chosen canonical encoding. In the case of chunking,

we will use finite state transducers (FSTs) to represent encodings. We will (somewhat

arbitrarily) choose IOB1 as the canonical encoding.1 Given an encoding’s FST, we

1Since any of the other commonly used tag-based encodings can be transformed to IOB1 by an
FST, and since FSTs are closed under composition, we are guaranteed that this choice of canonical
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Figure 4.1: Encoding Chunk Sequences with FSTs. Chunk structure encodings
are represented using FSTs. On the left, the FST for the IOE1 encoding is used to
encode a chunk sequence, by first generating the canonical (IOB1) encoding, and
then translating that encoding with the FST. On the right, that IOE1 encoding is
decoded back to a chunk structure by first applying the reversed IOE1 FST; and then
interpreting the resulting string using IOB1.

can encode a chunking into a tag sequence by first encoding the chunking using IOB1;

and then applying the FST to the IOB1 tag sequence. To decode a tag sequence,

we first apply the reversed FST to the tag sequence, to get an IOB1 tag sequence;

and then decode that tag sequence into a chunking, using IOB1. An example of the

encoding and decoding procedure is illustrated in Figure 4.1.

encoding does not prevent us from expressing any encodings that a different canonical encoding
would allow.
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Figure 4.2: FSTs for Five Common Chunk Encodings. Each transducer takes
an IOB1-encoded string for a given output value, and generates the corresponding
string for the same output value, using a new encoding. Note that the IOB1 FST is
simply an identity transducer; and note that the transducers that make use of the E

tag must use ε-output edges to delay the decision of which tag should be used until
enough information is available.
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4.1.1 FST Model & Notation

Without loss of generality, I will assume an FST model with the following properties:

• Each arc maps a single input symbol to an output symbol string. As a result,

there are no epsilon-input arcs; but epsilon-output arcs are allowed.

• There is a single initial state.

• Each final state has a (possibly empty) ’finalization string,’ which will be gen-

erated if the FST terminates at that state.

The variables S, Q, and P will be used for states. The variables x, y, and z will

be used for symbols. The variables α, β, and γ will be used for (possibly empty)

symbol strings. Arcs will be written as 〈S → Q[α : β]〉, indicating an arc from state

S to state Q with input string α and output string β.

4.1.2 Necessary Properties for Representing Encodings with

FSTs

In order for an FST to be used to represent an output encoding, it must have the

following three properties:

1. The FST’s inverse should be deterministic.2 Otherwise, we will be unable to

choose a single unique output for some combination of base decision outcomes.

2. The FST should recognize exactly the set of valid input strings.

– If it does not recognize some valid input string, then there is no way to

map that input to the new encoding.

– If it recognizes some invalid input string, then there exists some output

string that maps back to that invalid input.

2Or at least determinizable.
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3. The FST should always generate an output string with a length equal to its

input string’s length. Otherwise, it will not be possible to align the base

decisions with corresponding tokens.

In addition, it seems desirable for the FST to have the following two properties:

4. The FST should be deterministic. Otherwise, a single training example’s out-

put could be encoded in multiple ways, which would make training the indi-

vidual base decision classifiers difficult.

5. The FST should generate every output string. Otherwise, there would be some

possible system output that we are unable to map back to an input.

Unfortunately, these two properties, when taken together with the first three, are

problematic. To see why, assume an FST with an output alphabet of size k. Property

(5) requires that all possible output strings be generated, and property (1) requires

that no string is generated for two input strings, so the number of strings generated

for an input of length n must be exactly kn. But the number of possible chunkings

for an input of length n is 3n − 3n−1 − 3n−2; and there is no integer k such that

kn = 3n − 3n−1 − 3n−2.3

We must therefore relax at least one of these two properties. Relaxing the first

property (deterministic FSTs) will make training harder; and relaxing the second

property (complete FSTs) will make testing harder. For the purposes of this disser-

tation, we will choose to relax the second property.

4.1.3 Inverting the Output Encoding

Recall that the motivation behind this second property is that we need a way to

map any set of annotation elements generated by the machine learning system back

to a corresponding structured output value. As an alternative to requiring that the

3To see why the number of possible chunkings is 3n− 3n−1− 3n−2, consider the IOB1 encoding:
it generates all chunkings, and is valid for any of the 3n strings except those that start with B (of
which there are 3n−1) and those that include the sequence OB (of which there are 3n−2).
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FST generate every output string, we can define a method for building output values

from annotation elements, even if those annotation elements do not form a “valid”

annotation. One such method is to assume that one or more of the annotation

elements was chosen incorrectly; and to make the minimal set of changes to the

annotation elements such that the annotation becomes valid.

In order to compute the optimal output value corresponding to each set of anno-

tation elements, we can use the following procedure:

1. Invert the original FST. I.e., replace each arc 〈S → Q[α : β]〉 with an arc

〈S → Q[β : α]〉.

2. Normalize the FST such that each arc has exactly one input symbol.

3. Assign a weight of zero to all arcs in the FST.

4. For each arc 〈S → Q[x : α]〉, and each y 6= x, add a new arc 〈S → Q[y : α]〉

with a weight one.4

5. Determinize the resulting FST, using a variant of the algorithm presented in

(Mohri, 1997) [33].

The resulting FST will accept all sequences of annotation elements, and will

generate for each sequence the output value that is generated with the fewest number

of changes to the given annotation elements.

4.1.4 FST Characteristics

In the introduction to this section, we defined three properties that an FST must have

in order to represent an output encoding for chunking. Based on these properties,

we can derive some additional characteristics that such an FST must have.

4Alternatively, the weights could be decided based on some measure of the confusability of x
and y.
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First, the FST may not contain any loops that could cause the input and output

lengths to differ:

Theorem 4.1. In a chunk output encoding FST, for any cycle, the total length of

the arcs’ input strings must equal the total length of the arcs’ output strings. (Unless

the cycle is not on any path from the initial state to a final state – in which case it

has no effect on the behavior of the transducer.)

Proof. For any cyclic path c from state s to s, consider two paths from the initial

state to a final state: p1 passes through state s, but does include the cycle; and p2 is

the same path, but with one turn through the cycle. Let in(p) be the input string

recognized by a path p, and out(p) be the output string generated by that path.

By assumption, |in(p)| = |out(p)| for any path from an initial node to a final node.

Thus |in(p1)| = |out(p1)| and |in(p2)| = |out(p2)|. But |in(p2 )| = |in(p1)| + |in(c)|

and |out(p2)| = |out(p1)|+ |out(c)|. Therefore |in(c)| = |out(c)|.

Next, we can associate a unique number, the output offset, with each state, which

specifies the difference between the length of the input string consumed and the

output string generated whenever we are at that state.

Theorem 4.2. For each state S, there exists a unique integer output offset(S), such

that on any path p from the initial state to S, |in(p)| − |out(p)| = output offset(S)

Proof. Let p1 and p2 be two paths from the initial state to S, and let p3 be a path

from S to a final state. Then by assumption:

|in(p1)|+ |in(p3)| = |out(p1)|+ |out(p3)|

|in(p2)|+ |in(p3)| = |out(p2)|+ |out(p3)|

Rearranging and substituting gives:

|in(p1)| − |out(p1)| = |in(p2)| − |out(p2)|

Therefore, output offset(S) is unique.
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4.2 Chunk-Encoding FST Modifications

The previous section showed how FSTs can be used to represent output encodings

for chunking tasks. This section turns to the questions of how different encodings

are related to one another, and of how we can improve upon an existing encoding

scheme. In other words, given the space of chunk-encoding FSTs, we want to know

how different elements of the space relate to one another; and we want to define a

search algorithm for finding the elements in this space that maximize performance.

The basic tool we will use to examine these questions is FST modifications. In

particular, we will define a set of modifications that can be used to transform any

chunk-encoding FST into any other chunk-encoding FST. We can then express the

relationship between any two encodings by examining what modifications would

need to be made to the first FST to turn it into the second FST. Furthermore, this

set of modifications defines a topology on the space of FSTs, which we can use to

search for chunk-encodings that improve chunking performance. The remainder of

this section describes the set of FST modification operations that I have defined

for modifying chunk-encodings. Taken together, these modification operations are

sufficient to generate any chunk-encoding FST.

4.2.1 State Splitting

The state splitting operation is used to introduce new structure to the chunk-

encoding FST, by increasing the number of states it contains. This operation oper-

ation does not, by itself, make any change to the transduction defined by the FST;

however, by adding new structure, it enables other modification operations to change

the chunk-encoding transduction in new ways.

The state splitting operation replaces an existing state in the graph with two

new equivalent states, and divides the incoming arcs to the original state between

the two new states. It is parametrized by a state, a subset of that state’s incoming

54



arcs called the redirected arc set, and a subset of the state’s loop arcs called the

copied loop set. The state splitting operation makes the following changes to an

FST:

1. A selected state S is duplicated. I.e., a new state, S ′ is created, with the same

finalizing sequence as S; and for each outgoing arc from S, a corresponding

arc is added to S ′. In particular, for each arc 〈S → Q[x : y]〉, add a new arc

〈S ′ → Q[x : y]〉. Note that self-loop arcs from S (i.e., arcs where Q = S) will

result in arcs from S ′ to S.

2. For each incoming arc in the redirected arc set, change the arc’s destination

from S to S ′.

3. For each arc in the copied loop set, we added a corresponding arc from S ′ to S

in step 1. Change this arc’s destination from S to S ′ (turning it into a self-loop

arc at S ′).

The state splitting operation is a very general operation, and can be used to

make relatively drastic changes to the transduction. As a result, this operation is too

general to allow for efficient search for improved chunk-encodings. I therefore define

several specializations of this operation, which make smaller modifications that are

more amenable to search: arc specialization and loop unrolling .

Arc Specialization

The arc specialization operation is a special case of state splitting . It acts on a

single arc e with destination state S, and makes the following changes to the FST:

1. Create a new state S’.

2. For each outgoing arc e1 = 〈S → Q[α : β]〉, S 6= Q, add an arc e2 = 〈S ′ →

Q[α : β]〉.

3. For each loop arc e1 = 〈S → S[α : β]〉, add an arc e2 = 〈S ′ → S ′[α : β]〉.
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Figure 4.4: Arc Specialization Variant.

4. Change arc e’s destination from S to S ′.

An example of this operation is shown in figure 4.3. Like all state splitting operations,

arc specialization does not directly modify the transduction performed by the FST.

However, it does provide the FST with two states that can be used to distinguish

the path that was taken to arrive at the original S state.

In a variant transformation, shown in figure 4.4, the loop arcs from S can be

replaced by arcs from S → S ′, rather than loop arcs in S ′. I.e., this variant operation

makes the following changes to the FST. (This operation differs from the basic arc
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Figure 4.5: Loop Unrolling.

specialization operation in step 3.)

1. Create a new state S’.

2. For each outgoing arc e1 = 〈S → Q[α : β]〉, S 6= Q, add an arc e2 = 〈S ′ →

Q[α : β]〉.

3. For each loop arc e1 = 〈S → S[α : β]〉, add an arc e2 = 〈S ′ → S[α : β]〉.

4. Change the destination of arc e from S to S ′.

Loop Unrolling

The loop unrolling operation is another special case of state splitting. It acts on a

single self-loop arc e at a state S, and makes the following changes to the FST:

1. Create a new state S’.

2. For each outgoing arc e1 = 〈S → Q[α : β]〉 6= e, add add an arc e2 = 〈S ′ →

Q[α : β]〉. Note that if e1 was a self-loop arc (i.e., S = Q), then e2 will point

from S ′ to S.

3. Change the destination of loop arc e from S to S ′.

Loop unrolling is similar to arc specialization , except that the new copy of the

arc being unrolled has its destination set to S ′, while all other copies of loop arcs
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have their destinations set to S. Figure 4.5 shows the loop unrolling operation. The

arc being unrolled is marked in bold.

Like any state splitting operation, loop unrolling does not actually change the

transduction performed by the FST. However, it does provide the FST with two

states that can be used to distinguish the first pass through the loop from subsequent

passes through the loop.

4.2.2 Output Relabeling

The output relabeling operation replaces the output strings on a state S’s incoming

and outgoing arc with new output strings, with the following restrictions:

• The FST’s inverse must remain deterministic. I.e., the output strings may not

be modified in such a way that multiple input values will generate the same

output value. This ensures that we can map the new encoding back to the

canonical encoding.

• If the lengths of the output strings are changed, then there must be a unique

(possibly negative) n such that the lengths of all incoming edges’ output strings

is increased by n; the lengths of all outgoing edges’ output strings is decreased

by n; and the length of the finalization string is decreased by n (if the state

is a final state). This will ensure that output offset(S) remains unique for the

state; the new value for output offset(S) will differ from the original value for

output offset(S) by n.

Like the state splitting operation, output relabeling is a very general operation,

and can be used to make relatively drastic changes to the transduction. I therefore

define two specializations of this operation, which are more amenable to search:

• The new output tag operation replaces an arc 〈S → Q[α : βxγ]〉 with an arc

〈S → Q[α : βyγ]〉, where y is a new output symbol that is not used anywhere

else in the transducer.

58



s
/E

b:B

a:A c:C

Before After

d:D

s
/AE

b:B

a:ε c:AC

d:AD

Figure 4.6: Output Delay.

• The relabel arc operation replaces an arc 〈S → Q[α : β]〉 with an arc 〈S →

Q[α : γ]〉, where γ is an output string that is distinct from all other output

strings from state S, but is composed of output symbols that are already used

in the transducer. The length of the new output string must equal the length

of the old output string, to ensure a consistent output offset(S) value.

4.2.3 Output Delay

The output delay operation acts on a single state S, and requires that all of S’s

incoming edges have non-empty output strings. It makes the following changes:

• Strip the last output symbol off of each incoming edge’s output string.

• Add an output symbol to the beginning of each non-loop outgoing edge.

• Add an output symbol to the beginning of the finalization string of node S.

The output symbol that should be added to the non-loop outgoing edges and

the finalization string can be either one of the stripped output symbols, or a new

symbol. Figure 4.6 shows an example of the output delay operation.

4.2.4 Feature Specialization

The final FST modification operation, feature specialization , differs from the other

operations in that it makes use of features of the input value. For example, in a
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noun phrase chunker, this operation can be used to split a state in two, depending

on whether the current input word is a preposition or not. The feature specialization

operation acts on an arc a = 〈S → Q[α : βxγ]〉, an input feature f , and a feature

value v. It makes the following changes to the FST:

• Duplicate the destination state Q. In other words, create a new state, Q′,

which has the same outgoing edges as Q.

• Replace arc a with two new arcs: 〈S → Q[α : βx[f=v]γ]〉 and 〈S → Q[α :

βx[f 6=v]γ]〉.

Where x[f=v] is an input symbol that will only match if the corresponding to-

ken’s tag is x and the corresponding token’s feature f has value v; and x[f 6=v] is

an input symbol that will only match if the corresponding token’s tag is x and the

corresponding token’s feature f does not have value v.

4.3 A Hill Climbing Algorithm for Optimizing Chunk

Encodings

Having defined a set of modification operations for chunk-encoding FSTs, we can

now use those operations to search for improved chunk encodings. In particular, we

can use a hill-climbing approach to search the space of possible encodings for an

encoding which yields increased performance. This approach starts with a simple

initial FST, and makes incremental local changes to that FST until a locally optimal

FST is found. In order to help avoid sub-optimal local maxima, we can use a fixed-

size beam search. In order to test the effectiveness of this approach, I applied the

hill-climbing procedure shown in Figure 4.7 to the task of NP chunking.
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1. Initialize candidates to be the singleton set containing the identity trans-
ducer.

2. Repeat ...

(a) Generate five new FSTs, by randomly applying modification opera-
tions to members of the candidates set.

(b) Evaluate each of these new FSTs, by training them on the training
set and testing them on held-out data.

(c) Add the new FSTs to the candidates set.
(d) Sort the candidates set by their score on the held-out data, and

discard all but the ten highest-scoring candidates.

... until no improvement is made for three consecutive iterations.

3. Return the candidate FST with the highest score.

Figure 4.7: A Hill Climbing Algorithm for Optimizing Chunk Encodings.

Feature Description

word.lower The lower-case version of the token.
form A string describing the capitalization and form of the token: one

of number, allcaps, capitalized, lowercase, or other.
sentpos Position in the sentence: one of start, mid, end.
word.pos The part of speech tag of the token.
prev.pos The part of speech tag of the previous token.
next.pos The part of speech tag of the next token.

Figure 4.8: Feature Set for the HMM NP Chunker.

4.3.1 Experiments

In my initial experiments, I used a Hidden Markov Model as the underlying ma-

chine learning algorithm for learning tag sequences. The features used are listed in

Figure 4.8. Training and testing were performed using the noun phrase chunking

corpus described in Ramshaw & Marcus (1995) [43]. A randomly selected 10% of

the originally training corpus was used as held-out data, to provide feedback to the

hill-climbing system.

The baseline system, which used the canonical encoding (IOB1), achieves an F-

score of 87.6%. Using the hill-climbing algorithm to find an improved encoding, and
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training and testing with that new encoding, increases the system’s F-score to 89.2%.

It should be noted that both of these F-scores are significantly below the current

state of the art for NP chunking. This is probably a result of the fact that the

underlying HMM model is not sufficiently flexible to learn these tagging sequences.

In particular, HMM models assume that all input features are mutually independent;

but clearly, the feature set I used included a number of dependant features.

I therefore conducted a second experiment, in which I replicated the state-of-the-

art NP chunker described in Sha & Pereira (2003) [47], using the Mallet software

package [32]. This system uses a Linear Chain Conditional Random Field to model

the tag sequence. CRF labels yi are defined to be pairs of output tags ci−1ci. The

features used are listed in Figure 4.9. Using this state-of-the-art NP chunker as my

underlying system, the hill-climbing procedure did not lead to any significant change

in the performance of the chunker.

There are several possible reasons for this. First, the performance of Sha &

Pereira’s NP chunker is already very close to human performance scores. In other

words, there is very little headroom for making improvements, since we can not

reasonably expect a supervised system to perform better than humans. Second, it is

possible that there exist superior encodings for use with Sha & Pereira’s NP chunker,

but that the set of local FST modifications that are available to the hill climbing

algorithm do not provide a sufficiently monotonic gradient for the algorithm to find

such encodings. The use of a different set of FST modification operations might

allow the hill climbing algorithm to find encodings that the current system is unable

to find.

4.4 Optimizing the Hill-Climbing Search

Since the hill-climbing procedure must evaluate every candidate output encoding on

the held-out data, it can be relatively slow. Furthermore, the search is currently
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Feature Description
c(yi) The current output tag.
yi = y The current state (current and previous

output tag).
yi = y, yi−1 = y′ A tuple of the current state and the previ-

ous state (current and previous two output
tags).

yi, wi+n A tuple of the current state and the i+nth
word, −2 ≤ n ≤ 2.

yi, wi, wi−1 A tuple of the current state, the current
word, and the previous word.

yi, wi, wi+1 A tuple of the current state, the current
word, and the next word.

yi, ti+n A tuple of the current state and the part of
speech tag of the i+nth word, −2 ≤ n ≤ 2.

yi, ti+n, ti+n+1 A tuple of the current state and the two
consecutive part of speech tags starting at
word i + n, −2 ≤ n ≤ 1.

yi+n−1, ti+n, ti+n+1 A tuple of the current state, and three con-
secutive part of speech tags centered on
word i + n, −1 ≤ n ≤ 1.

c(yi), wi+n A tuple of the current output tag and the
i + nth word, −2 ≤ n ≤ 2.

c(yi), wi, wi−1 A tuple of the current output tag, the cur-
rent word, and the previous word.

c(yi), wi, wi+1 A tuple of the current output tag, the cur-
rent word, and the next word.

c(yi), ti+n A tuple of the current output tag and the
part of speech tag of the i+nth word, −2 ≤
n ≤ 2.

c(yi), ti+n, ti+n+1 A tuple of the current output tag and the
two consecutive part of speech tags start-
ing at word i + n, −2 ≤ n ≤ 1.

yi+n−1, ti+n, ti+n+1 A tuple of the current output tag, and
three consecutive part of speech tags cen-
tered on word i + n, −1 ≤ n ≤ 1.

Figure 4.9: Feature Set for the CRF NP Chunker.
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fairly undirected: it simply chooses modification operations at random. This section

discusses three approaches that might be used to increase the speed and accuracy of

the hill-climbing algorithm.

4.4.1 Predicting Which Modifications Will Help

The first approach attempts to provide some guidance to the hill-climbing search

by predicting which modification operations will improve performance. In particu-

lar, there are certain conditions under which we might expect a given modification

operation to yield more positive results than others.

For example, consider the operation of feature specialization , which splits a given

FST state based on a feature of the input value. Essentially, this transformation

is allowing us to distinguish two pieces of output structure that were previously

grouped into the same equivalence class. In other words, this transformation divides

one group of equivalent sub-problems into two sub-groups. If these two sub-groups

behave differently from each other, then this transformation will allow the underlying

model to capture those differences. But at the same time, this split will increase

the data sparsity for each of the new sub-groups. Thus, we expect the feature

specialization operation to be more likely to improve performance if data sparsity is

not an issue. In particular, we should be more willing to split a symbol if we have

more training data for that symbol.

We can test this hypothesis by performing the feature specialization operation

on a variety of features, and looking at the relationship between the data support

for the feature and the resulting change in performance. Based on this experiment,

we can come to conclusions about how much data support should be required before

we are willing to apply the feature specialization operation. We can then apply

those results back to the hill-climbing system, by increasing the chance that it will

apply the feature specialization operation when there is sufficient data support, and

decreasing the chance when there is not.
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4.4.2 Problem-Driven Learning

A second approach that could provide guidance to the hill-climbing algorithm would

be to examine the specific problems that are made by a given encoding, and then

use those problems to focus the search area of the hill-climbing algorithm. Given

the fact that an encoding makes a large number of mistakes on a given output

tag, we could examine the context of that output tag, and attempt to augment the

output encoding in ways that would allow the system to improve performance. For

example, we could search for features of the input, both local and non-local, which

might allow the system to distinguish the incorrect tags from the correct ones; and

use those features to apply the feature specialization operation.

4.4.3 Searching for Patterns

Often, a given chunking task will include several special classes of output value that

act differently from the rest. For example, in the task of noun phrase chunking,

certain noun phrase types, such as date expressions, money expressions, and proper

nouns, act very differently from other noun phrases. In such cases, it may be bene-

ficial to split these special classes out, by tagging them with unique output tags.

In order to find such special classes automatically, we can use unsupervised tech-

niques to search through the training corpus (including both input and output values)

for instances that act differently from the rest. For example, clustering techniques

could be used to find classes of instances that are significantly different from each

other. These classes could then be specialized in the output encoding, by assigning

different output tags depending on which class each instance belongs to.

Alternatively, if we have prior domain knowledge about such special classes, we

can let the hill climbing know about them, giving it the option of using specialized

output tags to encode them.
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4.5 Proposed Work

For my dissertation, I plan to refine the use of hill-climbing algorithms to find im-

proved output encodings for chunking tasks. In particular, I plan to carry out the

following experiments:

• Evaluate the performance of the current hill-climbing system on a chunking

task with more headroom than Base NP Chunking, such as Biomedical Named

Entity Detection.

• Perform several experiments that explore factors influencing the impact of

existing modification operations on system performance, and use those exper-

iments to provide improved guidance to the hill-climbing system.

• Apply a problem-driven learning approach to provide improved guidance to

the hill-climbing system.

• Evaluate the effect of specializing chunk-encoding output tags by dividing in-

stances based on unsupervised clustering algorithms.
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Chapter 5

Transforming Semantic Role

Labels via SemLink

Semantic role labeling involves locating the arguments of a verb, and assigning them

role labels that describe their semantic relationship with the verb. However, there

is still little consensus in the linguistic and NLP communities about what set of role

labels is most appropriate. The Proposition Bank (PropBank) corpus [36] avoids

this issue by using theory-agnostic labels (Arg0, Arg1, . . . , Arg5), and by defin-

ing those labels to have verb-specific meanings. Under this scheme, PropBank can

avoid making any claims about how any one verb’s arguments relate to other verbs’

arguments, or about general distinctions between verb arguments and adjuncts.

However, there are several limitations to this approach. The first is that it can

be difficult to make inferences and generalizations based on role labels that are only

meaningful with respect to a single verb. Since each role label is verb-specific, we

can not confidently determine when two different verbs’ arguments have the same

role; and since no encoded meaning is associated with each tag, we can not make

generalizations across verb classes. In contrast, the use of a shared set of role labels,

such as thematic roles, would facilitate both inferencing and generalization.

The second issue with PropBank’s verb-specific approach is that it can make
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training automatic semantic role labeling (SRL) systems more difficult. A vast

amount of data would be needed to train the verb-specific models that are the-

oretically mandated by PropBank’s design. Instead, researchers typically build a

single model for each numbered argument (Arg0, Arg1, . . . , Arg5). This approach

works surprisingly well, mainly because an explicit effort was made when PropBank

was created to use arguments Arg0 and Arg1 consistently across different verbs; and

because those two argument labels account for 85% of all arguments. However, this

approach causes the system to conflate different argument types, especially with the

highly overloaded arguments Arg2-Arg5. As a result, these argument labels are quite

difficult to learn.

A final difficulty with PropBank’s current approach is that it limits SRL system

robustness in the face of verb senses and verb constructions that were not included

in the training data (namely, the Wall Street Journal). If a PropBank-trained SRL

system encounters a novel verb or verb usage, then there is no way for it to know

which role labels are used for which argument types, since role labels are defined so

specifically. For example, even if there is ample evidence that an argument is serving

as the destination for a verb, an SRL system trained on PropBank will be unable to

decide which numbered argument (Arg0-5) should be used for that particular verb

unless it has seen that verb used with a destination argument in the training data.

This type of problem can happen quite frequently when SRL systems are run on novel

genres, as reflected in the relatively poor performance of most state-of-the-art SRL

systems when tested on a novel genre, the Brown corpus, during CoNLL 2005. For

example, the SRL system described in [41, 40] achieves an F-score of 81% when tested

on the same genre as it is trained on (WSJ); but that score drops to 68.5% when the

same system is tested on a different genre (the Brown corpus). DARPA-GALE is

funding an ongoing effort to PropBank additional genres, but better techniques for

generalizing the semantic role labeling task are still needed.

To help address these three difficulties, we have constructed a mapping between
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PropBank and another lexical resource, VerbNet. By taking advantage of VerbNet’s

more consistent and coherent set of labels, we can generate more useful role label

annotations with a resulting improvement in SRL performance, especially for novel

genres.

5.1 VerbNet

VerbNet [46] consists of hierarchically arranged verb classes, inspired by and ex-

tended from classes of Levin 1993 [27]. Each class and subclass is characterized

extensionally by its set of verbs, and intensionally by a list of the arguments of those

verbs and syntactic and semantic information about the verbs. The argument list

consists of thematic roles (23 in total) and possible selectional restrictions on the

arguments expressed using binary predicates. The syntactic information maps the

list of thematic arguments to deep-syntactic arguments (i.e., normalized for voice al-

ternations, and transformations). The semantic predicates describe the participants

during various stages of the event described by the syntactic frame.

The same thematic role can occur in different classes, where it will appear in

different predicates, providing a class-specific interpretation of the role. VerbNet

has been extended from the original Levin classes, and now covers 4526 senses for

3769 verbs. A primary emphasis for VerbNet is the grouping of verbs into classes

that have a coherent syntactic and semantic characterization, that will eventually

facilitate the acquisition of new class members based on observable syntactic and

semantic behavior. The hierarchical structure and small number of thematic roles is

aimed at supporting generalizations.
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5.2 SemLink: Mapping PropBank to VerbNet

Because PropBank includes a large corpus of manually annotated predicate-argument

data, it can be used to train supervised machine learning algorithms, which can in

turn provide PropBank-style annotations for novel or unseen text. However, Prop-

Bank’s verb-specific role labels are somewhat problematic. Furthermore, PropBank

lacks much of the information that is contained in VerbNet, including information

about selectional restrictions, verb semantics, and inter-verb relationships.

Therefore, as part of the SemLink project, we have created a mapping between

VerbNet and PropBank [28], which will allow us to use the machine learning tech-

niques that have been developed for PropBank annotations to generate more seman-

tically abstract VerbNet representations. Additionally, the mapping can be used

to translate PropBank-style numbered arguments (Arg0. . . Arg5) to VerbNet the-

matic roles (Agent, Patient, Theme, etc.), which should allow us to overcome the

verb-specific nature of PropBank.

The SemLink mapping between VerbNet and PropBank consists of two parts:

a lexical mapping and an instance classifier. The lexical mapping is responsible

for specifying the potential mappings between PropBank and VerbNet for a given

word; but it does not specify which of those mappings should be used for any given

occurrence of the word. That is the job of the instance classifier, which looks at

the word in context, and decides which of the mappings is most appropriate. In

essence, the instance classifier is performing word sense disambiguation, deciding

which lexeme from each database is correct for a given occurrence of a word. In

order to train the instance classifier, we semi-automatically annotated each verb in

the PropBank corpus with VerbNet class information.1 This mapped corpus was

then used to build the instance classifier. More details about the mapping, and how

it was created, can be found in [28].

1Excepting verbs whose senses are not present in VerbNet (24.5% of instances).
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5.3 Analysis of the Mapping

An analysis of the mapping from PropBank role labels to VerbNet thematic roles

confirms the belief that PropBank roles Arg0 and Arg1 are relatively coherent, while

roles Arg2-5 are much more overloaded. Table 5.1 shows how often each PropBank

role was mapped to each VerbNet thematic role, calculated as a fraction of instances

in the mapped corpus. From this figure, we can see that Arg0 maps to agent-like

roles, such as “agent” and “experiencer,” over 94% of the time; and Arg1 maps

to patient-like roles, including “theme,” “topic,” and “patient,” over 82% of the

time. In contrast, arguments Arg2-5 get mapped to a much broader variety of roles.

It is also worth noting that the sample size for arguments Arg3-5 is quite small in

comparison with arguments Arg0-2, suggesting that any automatically built classifier

for arguments Arg3-5 will suffer severe sparse data problems for those arguments.

5.4 Training a SRL system with VerbNet Roles to

Achieve Robustness

An important issue for state-of-the-art automatic SRL systems is robustness: al-

though they receive high performance scores when tested on the Wall Street Journal

(WSJ) corpus, that performance drops significantly when the same systems are tested

on a corpus from another genre. This performance drop reflects the fact that the

WSJ corpus is highly specialized, and tends to use genre-specific word senses for

many verbs. The 2005 CoNLL shared task has addressed this issue of robustness

by evaluating participating systems on a test set extracted from the Brown corpus,

which is very different from the WSJ corpus that was used for training. The results

suggest that there is much work to be done in order to improve system robustness.

One of the reasons that current SRL systems have difficulty deciding which role

label to assign to a given argument is that role labels are defined on a per-verb basis.
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Arg0 (n=45,579)
Agent 85.4%
Experiencer 7.2%
Theme 2.1%
Cause 1.9%
Actor1 1.8%
Theme1 0.8%
Patient1 0.2%
Location 0.2%
Theme2 0.2%
Product 0.1%
Patient 0.0%
Attribute 0.0%

Arg1 (n=59,884)
Theme 47.0%
Topic 23.0%
Patient 10.8%
Product 2.9%
Predicate 2.5%
Patient1 2.4%
Stimulus 2.0%
Experiencer 1.9%
Cause 1.8%
Destination 0.9%
Theme2 0.7%
Location 0.7%
Source 0.7%
Theme1 0.6%
Actor2 0.6%
Recipient 0.5%
Agent 0.4%
Attribute 0.2%
Asset 0.2%
Patient2 0.2%
Material 0.2%
Beneficiary 0.0%

Arg2 (n=11,077)
Recipient 22.3%
Extent 14.7%
Predicate 13.4%
Destination 8.6%
Attribute 7.6%
Location 6.5%
Theme 5.5%
Patient2 5.3%
Source 5.2%
Topic 3.1%
Theme2 2.5%
Product 1.5%
Cause 1.2%
Material 0.8%
Instrument 0.6%
Beneficiary 0.5%
Experiencer 0.3%
Actor2 0.2%
Asset 0.0%
Theme1 0.0%

Arg3 (n=609)
Asset 38.6%
Source 25.1%
Beneficiary 10.7%
Cause 9.7%
Predicate 9.0%
Location 2.0%
Material 1.8%
Theme1 1.6%
Theme 0.8%
Destination 0.3%
Instrument 0.3%

Arg4 (n=18)
Beneficiary 61.1%
Product 33.3%
Location 5.6%

Arg5 (n=17)
Location 100.0%

Table 5.1: PropBank Role Mapping Frequencies. This table lists the frequency
with which each PropBank numbered argument is mapped to each VerbNet thematic
role in the mapped corpus. The number next to each PropBank argument (n)
indicates the number of occurrences of that numbered argument in the mapped
corpus.
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This is less problematic for Arg0 and Arg1, where a conscious effort was made to

be consistent across verbs; but is a significant problem for Args[2-5], which tend to

have very verb-specific meanings. This problem is exacerbated even further on novel

genres, where SRL systems are more likely to encounter unseen verbs and uses of

arguments that were not encountered in the training data.

5.4.1 Addressing Current SRL Problems via Lexical Map-

pings

By exploiting the mapping between PropBank and VerbNet, we can transform the

data to make it more consistent, and to expand the size and variety of the training

data. In particular, we can use the mapping to transform the verb-specific PropBank

role labels into the more general thematic role labels that are used by VerbNet. Un-

like the PropBank labels, the VerbNet labels are defined consistently across verbs;

and therefore it should be easier for statistical SRL systems to model them. Fur-

thermore, since the VerbNet role labels are significantly less verb-dependent than

the PropBank roles, the SRL’s models should generalize better to novel verbs, and

to novel uses of known verbs.

5.5 SRL Experiments on Linked Lexical Resources

This section describes joint work done with Szu-ting Yi and Martha Palmer.

In [28] and [55], we performed several preliminary experiments to verify the fea-

sibility of performing semantic role labeling with VerbNet thematic roles. In these

experiments, we used the SemLink mapping to transform the PropBank corpus in

several different ways, and adapted Szu-ting Yi’s Semantic Role Labeling system to

use these transformed corpora as training data.
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5.5.1 The SRL System

Szu-ting Yi’s SRL system is a Maximum Entropy based pipelined system which

consists of four components: Pre-processing, Argument Identification, Argument

Classification, and Post Processing. The Pre-processing component pipes a sentence

through a syntactic parser and filters out constituents which are unlikely to be seman-

tic arguments based on their location in the parse tree. The Argument Identification

component is a binary MaxEnt classifier, which tags candidate constituents as argu-

ments or non-arguments. The Argument Classification component is a multi-class

MaxEnt classifier which assigns a semantic role to each constituent. The Post Pro-

cessing component further selects the final arguments based on global constraints.

Our experiments mainly focused on changes to the Argument Classification stage of

the SRL pipeline, and in particular, on changes to the set of output tags. For more

information on Szu-ting Yi’s original SRL system, including information about the

feature sets used for each component, see [56, 57].

5.5.2 Applying the SemLink Mapping to Individual Argu-

ments

We conducted two sets of experiments to test the effect of applying the SemLink

mapping to individual arguments. The first set used the mapping to subdivide Arg1;

and the second set used the mapping to subdivide Arg2. Since Arg2 is used in very

verb-dependent ways, we expect that mapping it to VerbNet role labels will increase

our performance. However, since a conscious effort was made to keep the meaning

of Arg1 consistent across verbs, we expect that mapping it to VerbNet labels will

provide less of an improvement.

Each experiment compares two SRL systems: one trained using the original

PropBank role labels; the other trained with the argument role under consideration

(Arg1 or Arg2) subdivided based on which VerbNet role label it maps to.
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Group 1 Group 2 Group 3 Group 4 Group 5
Theme Source Patient Agent Topic
Theme1 Location Product Actor2
Theme2 Destination Patient1 Experiencer Group 6
Predicate Recipient Patient2 Cause Asset
Stimulus Beneficiary
Attribute Material

Figure 5.1: Thematic Role Grouping A. This grouping of thematic roles was
used for subdividing Arg1 in Experiment 5.5.2. Karin Kipper assisted in creating
the groupings.

Group 1 Group 2 Group 3 Group 4 Group 5
Recipient Extent Predicate Patient2 Instrument
Destination Asset Attribute Product Cause
Location Theme Experiencer
Source Theme1 Actor2
Material Theme2
Beneficiary Topic

Figure 5.2: Thematic Role Grouping B. This grouping of thematic roles was
used for subdividing Arg2 in Experiment 5.5.2; and for mapping Args2-5 in Experi-
ment 5.5.4. Karin Kipper assisted in creating the groupings.

We found that subdividing directly into individual role labels created a significant

sparse data problem, since the number of output tags was increased from 6 to 28.

We therefore grouped the VerbNet thematic roles into coherent groups of similar

thematic roles, shown in Figure 5.1 (for the Arg1 experiments) and Figure 5.2 (for

the Arg2 experiments). Thus, for the Arg1 experiments, the transformed output

tags were {Arg0, Arg1group1, ..., Arg1group5, Arg2, Arg3, Arg4, Arg5, ArgM}; and for

the Arg2 experiments, the transformed output tags were {Arg0, Arg1, Arg2group1,

..., Arg2group6, Arg4, Arg4, Arg5, ArgM}.

The training data for both experiments is the portion of Penn Treebank II (sec-

tions 02-21) that is covered by the mapping. We evaluated each experimental system

using two test sets: section 23 of the Penn Treebank II, which represents the same

genre as the training data; and the PropBank-annotated portion of the Brown cor-

pus, which represents a very different genre. For the purposes of evaluation, the

experimental systems’ subdivided roles Argngroupi were simply treated as members
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System Precision Recall F1

Arg1-Original 89.24 77.32 82.85
Arg1-Mapped 90.00 76.35 82.61

Arg2-Original 73.04 57.44 64.31
Arg2-Mapped 84.11 60.55 70.41

Table 5.2: Results from Experiment 5.5.2 (WSJ Corpus). SRL System Perfor-
mance on Arg1 Mapping and Arg2 Mapping, tested using the WSJ corpus (section
23). This represents performance on the same genre as the training corpus.

System Precision Recall F1

Arg1-Original 86.01 71.46 78.07
Arg1-Mapped 88.24 71.15 78.78

Arg2-Original 66.74 52.22 58.59
Arg2-Mapped 81.45 58.45 68.06

Table 5.3: Results from Experiment 5.5.2 (Brown Corpus). SRL System Per-
formance on Arg1 Mapping and Arg2 Mapping, tested using the PropBank-annotated
portion of the Brown corpus. This represents performance on a different genre from
the training corpus.

of Argn. This was necessary to allow direct comparison between the baseline system

and the experimental systems; and because no gold-standard data is available for

the subdivided roles in the Brown Corpus.

Results and Discussion

Table 5.2 gives the results of the mapping on SRL overall performance, tested on

the WSJ corpus Section 23; Table 5.3 shows the effect on SRL overall system perfor-

mance, tested on the Brown corpus. Systems Arg1-Original and Arg2-Original are

trained using the original PropBank labels, and show the baseline performance of our

SRL system. Systems Arg1-Mapped and Arg2-Mapped are trained using PropBank

labels augmented with VerbNet thematic role groups. As mentioned above, system

performance was evaluated based solely on the PropBank role labels (and not the

subdivided labels) in order to allow direct comparison between the original system

and the mapped systems.
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We had hypothesized that with the use of thematic roles, we would be able to

create a more consistent training data set which would result in an improvement in

system performance. In addition, the thematic roles would behave more consistently

than the overloaded Args[2-5] across verbs, which should enhance robustness. How-

ever, since in practice we are also increasing the number of argument labels an SRL

system needs to tag, the system might suffer from data sparseness. Our hope was

that the enhancement gained from the mapping will outweigh the loss due to date

sparseness.

From Table 5.2 and Table 5.3 we see the F1 scores of Arg1-Original and Arg1-

Mapped are not statistically different on both the WSJ corpus and the Brown corpus.

These results confirm the observation that Arg1 in the PropBank behaves fairly

verb-independently so that the VerbNet mapping does not provide much benefit.

The increase of precision due to a more coherent training data set is compensated

for by the loss of recall due to data sparseness.

The results of the Arg2 experiments tell a different story. Both precision and

recall are improved significantly, which demonstrates that the Arg2 label in the

PropBank is quite overloaded. The Arg2 mapping improves the overall results (F1)

on the WSJ by 6% and on the Brown corpus by almost 10%. As a more diverse

corpus, the Brown corpus provides many more opportunities for generalizing to new

usages. Our new SRL system handles these cases more robustly, demonstrating the

consistency and usefulness of the thematic role categories.

5.5.3 Improved Argument Distinction via Mapping

The ARG2-Mapped system generalizes well both on the WSJ corpus and the Brown

corpus. In order to explore the improved robustness brought by the mapping, we

extracted and observed the 1,539 instances to which the system ARG2-Mapped as-

signed the correct semantic role label, but which the system ARG2-Original failed to

predict. From the confusion matrix depicted in Table 5.4, we discover the following:
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Confusion ARG2-Original
Matrix ARG1 ARG2 ARGM

ARG2- ARG0 53 50 -
Mapped ARG1 - 716 -

ARG2 1 - 2
ARG3 - 1 -
ARGM 1 482 -

233 ARG2-Mapped arguments are not labeled by
ARG2-Original

Table 5.4: Confusion Matrix for Experiment 5.5.2. Confusion matrix on the
1,539 instances which ARG2-Mapped tags correctly and ARG2-Original fails to pre-
dict.

The mapping makes ARG2 more clearly defined, and as a result there is a better

distinction between ARG2 and other argument labels: Among the 1,539 instances

that ARG2-Original didn’t tag correctly, 233 instances are not assigned an argument

label, and 1,252 instances of ARG2-Original confuse the ARG2 label with another

argument label: the system ARG2-Original assigned the ARG2 label to 50 ARG0’s,

716 ARG1’s, 1 ARG3 and 482 ARGM’s, and assigned other argument labels to 3

ARG2’s.

5.5.4 Applying the SemLink Mapping to Multiple Argu-

ments

We also performed an experiment to evaluate the effect of applying the SemLink

mapping to multiple arguments. Since PropBank arguments Arg0 and Arg1 are

already quite coherent, we left them as-is in the new label set. But since argu-

ments Arg2-Arg5 are highly overloaded, we replaced them by mapping them to their

corresponding VerbNet thematic role.

In order to prevent the training data from these mapped labels from becoming too

sparse (which would impair system performance) we grouped the VerbNet thematic

roles into five coherent groups of similar thematic roles, shown in Figure 5.2. Our
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System Precision Recall F1

Original 90.65 85.43 87.97
Mapped 88.85 84.56 86.65

Table 5.5: Results from Experiment 5.5.4 (overall). Overall SRL System
performance using the PropBank tag set (“Original”) and the augmented tag set
(“Mapped”). Note that these results are not directly comparable, since the these two
tag sets have different information content.

new tag set therefore included the following tags: Arg0 (agent); Arg1 (patient);

Group1 (goal); Group2 (extent); Group3 (predicate/attrib); Group4 (product);

and Group5 (instrument/cause).

Training our SRL system using these thematic role groups, we obtained perfor-

mance similar to the original SRL system. However, it is important to note that these

performance figures are not directly comparable, since the two systems are perform-

ing different tasks. In particular, the role labels generated by the original system are

verb-specific, while the role labels generated by the new system are verb-dependent.

Results

For our testing and training, we used the portion of Penn Treebank II that is covered

by the mapping, and where at least one of Arg2-5 is used. Training was performed

using sections 2-21 of the Treebank (10,783 instances); and testing was performed

on section 23 (859 instances). Table 5.5 displays the performance score for the SRL

system using the augmented tag set (“Mapped”). The performance score of the orig-

inal system (“Original”) is also listed, for reference; however, as was discussed above,

these results are not directly comparable because the two systems are performing

different tasks.

The results indicate that the performance drops when we train on the new ar-

gument labels, especially on precision when we evaluate the systems on only Arg2-

5/Group1-5 (see Table 5.6). However, it is premature to conclude that there is no

benefit from the VerbNet thematic role labels. Firstly, we have a very few mapped
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System Precision Recall F1

Original 97.60 83.67 90.10
Mapped 91.70 82.86 87.06

Table 5.6: Results from Experiment 5.5.4 (Arg2-Arg5 only). SRL System
performance evaluated on only Arg2-5 (Original) or Group1-5 (Mapped). Note that
these results are not directly comparable, since the these two tag sets have different
information content.

Arg3-5 instances (less than 1,000 instances); secondly, we lack test data generated

from a genre other than WSJ to allow us to evaluate the robustness (generality) of

SRL trained on the new argument labels.

5.6 Proposed Work

In order to further explore the hypothesis that mapping PropBank semantic role

labels to a more coherent set of role labels can improve both the performance and

the ability to generalize for SRL systems, I plan to perform the following experiments:

• First, I will repeat the experiments described in Section 5.5.2 on the remaining

arguments (Arg0 and Arg3-Arg5).

• Next, I will transform the entire corpus to use VerbNet thematic role labels;

and train an SRL system in that transformed space. I will evaluate this new

SRL system in two ways:

– By mapping the results of the new SRL system back to the space of

PropBank labels, and comparing performance on PropBank Argn role

labels.

– By mapping the results of the baseline SRL system to the space of VerbNet

labels, and comparing performance on VerbNet thematic role labels.

The second evaluation is justified by the fact that VerbNet role labels may be

more useful that PropBank labels. In particular, VerbNet thematic role labels
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are more amenable to use for inferencing because they are not verb-specific.

• Finally, I will evaluate the SemLink mapping by comparing the effect of trans-

forming via SemLink to the effect of transforming via alternative mappings,

such as a mapping based on the role label descriptions in the PropBank frames

files.
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Chapter 6

Encoding Semantic Role Labelling

Constraints

Chapter 5 showed that transforming the set of labels used to describe semantic roles

could improve SRL performance by creating more coherent classes for local classifiers.

However, SRL performance might also benefit from transformations that affect what

type of non-local information is available to the classifiers. In particular, the use of

output transformations can be examined with respect to allowing models to learn

long-distance constraints and dependencies between arguments.

A number of existing systems account for these long-distance constraints and

dependencies between arguments by first running a classifier that selects arguments

independently; and then using a re-ranking system on the n best outputs [17, 39, 52,

50, 54]. However, a single properly constructed joint model may outperform these

re-ranking approaches.

6.1 Baseline System

My baseline system encodes the role labeling of a sentence for a given predicate

as a sequence of word-aligned tags, describing the role played by each word in the
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Word He saw his friend John break the window
Tag Arg0 Pred Arg1 Arg1 Arg1 Arg1 Arg1 Arg1

Tag O O Arg0 Arg0 Arg0 Pred Arg1 Arg1

Figure 6.1: Sequence-Based SRL Encoding Example. The first line of tags
provides the annotation for the predicate “saw”; and the second line of tags provides
the annotation for the predicate “break.”

sentence. When using the PropBank label set, these tags are:

• Arg0-Arg5, ArgM: A word that is part of the specified argument.

• Pred: A word that is part of the predicate.

• O: Any other word.

When using theta role labels from the SemLink mapping, tags Arg0-Arg5 would be

replaced by tags Agent, Patient, etc. An example of this sequence-based encoding

for semantic role labelings is given in Figure 6.1 The baseline system uses a linear-

chain CRF to model tag sequences. I am still experimenting with the feature set for

the baseline system.

6.1.1 Second Baseline System

I may also define a second baseline system, which walks over the sentence’s parse

tree rather than processing the sentence in linear left-to-right order. Thus, instead

of assigning a tag to each word, we would assign a tag to each node in the tree. A

node would be tagged as Argn if it is the root of the parse tree node for argument

Argn, or any of its descendants. An example of this tree-based encoding is given in

Figure 6.2.

This could be done one of two ways: either I could define a linear-chain CRF,

where the input element list is a depth-first sequence of tree nodes; or I could define

a tree-based model.
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Figure 6.2: Tree-Based SRL Encoding Example. The left tree provides the
annotation for the predicate “saw”; and the right tree provides the annotation for
the predicate “break.”

6.2 Encoding Long-Distance Dependencies

One deficiency of the baseline models described in the previous section is that they

are incapable of learning dependencies between non-adjacent arguments. For exam-

ple, it is typically unlikely for an agent (Arg0) argument to follow a theme (Arg1)

argument if the predicate uses active voice. But the baseline systems have no way of

learning this fact: by the time the system is examining a potential theme argument,

the local model no longer has any record of whether an agent argument has been

predicted or not.

However, by modifying the tag set, we can allow the system to keep track of

a limited amount of history information, which can be used to learn long-distance

dependencies. For example, if we augment each tag with information about whether

or not an agent argument has been predicted, then the model will become capable

of learning the dependency between agents and themes in active-voice sentences.

Although this transformation would allow the system to learn a new constraint,

it is not obvious whether it would improve overall performance. Furthermore, there

may be other constraints that are important to system performance, which might
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require different transformations to the encoding. I therefore plan to apply the hill-

climbing algorithm described in Chapter 4 to the baseline SRL systems. The FST

modification operations already defined for the chunking task can be used as-is. It

may also be helpful to add a few new modification operations that are specialized to

the SRL task.

I will compare the performance of the system produced by the hill-climbing al-

gorithm with both the performance of the baseline system, and the performance of

existing systems that use re-ranking or other post-processing steps to enforce con-

straints.
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Chapter 7

Combining Multiple Learners:

Global Voting

As we have seen, any given structured output prediction problem can be decomposed

in many different ways. Usually, there is no single decomposition that allows us to

build a model that perfectly describes the problem domain – each decomposition

will give incorrect results for some set of training samples. But often, the set of

misclassified training samples is different for different decompositions. We can take

advantage of this fact by combining models built using different decompositions into

a single model.

In simple classification tasks, complementary models are often combined using

weighted voting. Using this scheme, the score assigned to each class for a given input

is the weighted sum of the individual classifier scores for that class. In particular,

given a set of classifier models Mi, where Mi(y|x) is the score assigned by Mi to class

y for input value x, and a set of weights wi for each model Mi, we can define a new

combined classifier M̂ as follows:

M̂(y|x) =
∑

i

wiMi(y|x) (7.1)
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We can then simply assign the highest scoring class to each new input value:

ŷ∗ = arg max
y

M̂(y|x) (7.2)

In this chapter, we will explore how weighted voting can be applied to structured

output tasks. This will allow us to combine the models that we learn using various

problem decompositions. Special attention is paid to sequence-learning tasks, but

many of the results that we show for sequence-learning tasks could be generalized to

other types of structured output tasks.

7.1 Local Voting

If we are trying to combine multiple models that all decompose the overall problem

in the same way, then we can perform voting on the subproblems, rather than on the

overall problem. A common example of this approach is linear interpolated backoff,

where a subproblem model that is based on a large feature space is smoothed by

averaging it with simpler models, based on subsets of the feature space. Linear

interpolated backoff can help prevent some types of sparse data problems, by allowing

the combined model to fall back on the simpler models’ estimates when the more

specific model’s estimates are unreliable.

However, if the models that we would like to combine all decompose the overall

problem in different ways, then voting on subproblem models is not an option. The

immediate problem with such an approach is that the subproblems do not corre-

spond to one another. But even if we could align the subproblems, voting on aligned

subproblems is still suboptimal: different problem decompositions allow us to encode

different long-distance dependencies between output structures; and in order to pre-

serve the information about these dependencies that is contained in the individual

models, voting must be done globally, on entire output sequences, rather than locally,

on individual subproblems.
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Nevertheless, several systems have used local voting schemes. For example, Shen

& Sarkar (2005) combines the output of multiple chunkers by converting their outputs

to a common format, and taking a majority vote on each tag [48]. Since the voting

is done on individual elements, and not on sequences, there is no guarantee that

the overall sequence will be assigned a high probability by any of the individual

classifiers. This problem is demonstrated in figure 7.1, which shows the Viterbi

graphs generated by three models for a given input. The probability distribution

over sequences defined by these graphs is shown in the following table:

Model Sequence P(Sequence)

Model 1 P-N-V-N 1.0

Model 2 P-V-N-N 0.6

P-N-V-N 0.4

Model 3 P-N-N-V 0.6

P-N-V-N 0.4

Applying the per-element voting algorithm, we first find the most likely sequence

for each model, and then vote on each individual part-of-speech tag. The highest

scored sequences are P-N-V-N (model 1); P-V-N-N (model 2); and P-N-N-V

(model 3). Voting on individual part-of-speech tags1 gives a highest score to the

sequence P-N-N-N. But this sequence is given an overall probability of zero by all

three models. If instead we had voted on sequences then the combined model would

give the following sequence scores:

Model Sequence P(Sequence)

Combined Model P-N-V-N 0.6

P-V-N-N 0.2

P-N-N-V 0.2

In this simple example, it is possible to exhaustively enumerate the distribu-

tion that is generated by the weighted voting technique. However, in most non-toy

1(Assuming equal model weights.)
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Figure 7.1: Problematic Set of Models for Local Voting. The Viterbi graphs
generated by three different models for a given input sentence, “My father flies jets.”
(Note that words “father,” “flies”, and “jets” can each be used as either a verb or
noun, depending on context.) The probability for a part-of-speech sequence given
by a model is the product of the edges in the path through that sequence of tags
(gray edges have probability 0). For example, the probability assigned by model 3
to the sequence P-N-V-N is 1× 1× 0.4× 1 = 0.4; and the probability assigned by
model 1 to the sequence P-N-N-V is 1× 1× 0× 0 = 0.
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examples, there are generally an exponential number of sequences with nonzero prob-

ability, making it impractical to examine and rank them all.

7.2 Global Voting

What we would like, then, is to combine the models in such a way as to find the

structured output with the best voted score. In particular, given a set of models Mi,

where Mi(y|x) is the score assigned by Mi to structured output value y for input

value x, and a set of weights wi for each model Mi, we can define a new combined

classifier M̂ as follows:

M̂(y|x) =
∑

i

wiMi(y|x) (7.3)

In other words, we would like to use exactly the same equation that we use with

classifiers. Unfortunately, finding the highest scoring output value is significantly

more difficult when we are working with structured outputs, since there are a very

large number of possible output values. Indeed, for many problem decomposition

types, finding the highest scoring output value is intractable in the general case.

However, it is possible to develop algorithms to find the best output in common

cases; or to find an “approximate best” output in all cases.

In Section 7.3, we will develop a variant of the Viterbi Graph for expressing

the global voting problem for Markovian sequence-learning tasks. We will begin by

examining the simpler problem of performing global voting for a set of models that all

use the same problem decomposition. We will then show how these techniques can be

applied to sets of models that use different problem decompositions. In the remaining

sections, we will explore how voting can be performed using this framework.

7.2.1 Global Voting for Sequence-Learning Tasks

In sequence-learning tasks, the structured output value y is encoded as a sequence

of tags. Given a set of models that share the same problem decomposition, we can
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define a single unique encoding function that is shared by all models:

encode(y) = ~y (7.4)

= (y1, ..., yT ) (7.5)

Under these conditions, the global voting problem can be reformulated as the

problem of finding the tag sequence that maximizes the weighted model score:

y∗ = decode(~y∗) (7.6)

~y∗ = arg max
~y

M̂(decode(~y|x)) (7.7)

= arg max
~y

∑
i

wiMi(decode(~y)|x) (7.8)

Recall that we are able to find the highest scoring output for a single model by

constructing a Viterbi graph, and using dynamic programming to find the highest

scoring path through that graph. Letting vMi be the Viterbi graph for model Mi

given input x, Equation 7.8 can be rewritten as:

~y∗ = arg max
~y

∑
i

wiv
Mi
y1

(1)
T∏

t=2

vMi
yt−1yt

(t) (7.9)

Unfortunately, Equation 7.9 can not be solved using dynamic programming tech-

niques. The presence of an extra summation between the arg max and the product

prevents us from recursively calculating δs(t), the score of the highest scoring path

through the Viterbi graph node qt,s. We therefore cannot apply the Viterbi algo-

rithm.

7.3 Grouped-State Viterbi Graphs

One interpretation of equation 7.9 is that we are looking for a single path, specified

by the tag sequence ~y∗, that maximizes the total score generated by a set of Viterbi

matrices, {vMi}. This interpretation can be made concrete by combining the indi-

vidual models’ Viterbi graphs into a single graph, where the corresponding nodes
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Figure 7.2: Grouped-State Viterbi Graph. The two graphs on the left are the
Viterbi graphs generated by two models on a single input. We combine these two
graphs into a new Grouped-State Viterbi Graph, on the right, where corresponding
nodes from the original Viterbi graphs are grouped together.

from each graph are grouped together; and reformulating our goal as finding the

highest-scoring sequence of state groups. An example of this new graph, which we

will call a Grouped-State Viterbi Graph, is shown in Figure 7.2.

A Grouped-State Viterbi Graph is very similar to a simple Viterbi graph, except

that we are interested in answering questions about sequences of state groups, instead

of sequences of simple states. In particular, we will be interested in determining the

overall score for a given sequence of state groups; and in finding the state group

sequence that maximizes the overall score.

Formally, we define a Grouped-State Viterbi Graph to consist of a Viterbi graph

〈S, T, Q, E〉, augmented by a set of state groups G = g1, ..., gK , such that each state

s ∈ S is contained in exactly one group g ∈ G. We define the score of a state group

sequence ~r = (r1, ..., rT ) to be the sum of the scores of all state sequences ~y that are
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Grouped-State Viterbi Graph 〈S, T, Q, E, G〉
Graph Nodes Q = {q0} ∪ {qt,s : 1 ≤ t ≤ T ; s ∈ S}
Graph Edges E = {〈q0 → q1,s〉 : s ∈ S}∪

{〈qt−1,s → qt,s′〉 : s ∈ S; t ∈ T}
Graph State Groups G = {g1, ..., gK}

State Sequence ~y = (y1, ..., yT )

State Group Sequence ~r = (r1, ..., rT )

Figure 7.3: Notation for Grouped-State Viterbi Graphs.

consistent with it:

score(~r) =
∑

~y:∀t,yt∈rt

score(~y) (7.10)

=
∑

~y:∀t,yt∈rt

(
weight(q0 → q1,y1)

T∏
t=2

weight(qt−1,yt−1 → qt,yt)

)
(7.11)

7.3.1 Sequence Voting with a Grouped-State Viterbi Graph

In order to use Grouped-State Viterbi Graphs to perform global voting for a sequence-

learning task, we must first combine the individual models’ Viterbi Graphs into a

single Grouped-State Viterbi Graph. We construct this combined graph as follows:

1. States in the new Grouped-State Viterbi Graph will be tuples 〈Mi, sj〉, pairing

a model with one of that model’s states.

2. State groups will consist of the corresponding states from each model:

G = {gs : s ∈ S} (7.12)

gs = {〈Mi, s〉 : Mi ∈ models} (7.13)

3. The Grouped-State Viterbi Graph transition scores will simply be copied from

the individual models’ Viterbi Graphs, with the initial edge weights modified
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to account for the model weights weight(Mi):

weight
(
q0 → q1,〈Mi,s〉

)
= (weight(Mi))

(
v(Mi)

s (1)
)

(7.14)

weight
(
qt−1,〈Mi,s〉 → qt,〈Mi,s′〉

)
= v

(Mi)
ss′ (t) (7.15)

In essence, this new Grouped-State Viterbi Graph simply combines the individual

Viterbi graphs by grouping the corresponding nodes. Given this Grouped-State

Viterbi Graph, and the definition of score~r given in Equation 7.10, the score of a

group sequence will be equal to the weighted average of the scores given by the

individual models to the corresponding state sequence. Thus, finding the highest

scoring voted sequence is equivalent to finding the highest scoring group sequence

through the Grouped-State Viterbi Graph:

score(~y∗) = max
~y

M̂(decode(~y)|x) (7.16)

= max
~y

∑
i

wiscore(Mi)(~y) (7.17)

= max
~r

(score(~r)) (7.18)

Unfortunately, the problem of finding the optimal group sequence in a Grouped-

State Viterbi Graph is NP-hard in the general case (See Appendix A for a proof.).

But the following sections will present algorithms that can be used to find the optimal

G in common cases; or to find a near-optimal G in all cases.

7.4 Finding Optimal Group Sequences

Although the problem of finding the optimal path through a Grouped-State Viterbi

Graph is NP-Hard in the general case, it is still possible to derive algorithms which

can find the optimal path for a restricted set of graphs; or to find a near-optimal path

for any graph. In this section, we will first develop an algorithm that can be used

to find the optimal group sequence for most of the Grouped State Viterbi Graphs

that are generated by common machine learning algorithms. We will then show
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Figure 7.4: Viterbi Dynamic Programming Decomposition. A portion of a
Viterbi graph, showing the score decomposition that is used by the Viterbi algorithm
to calculate δs(t) recursively.

how this algorithm can be made to cover all inputs, at the expense of producing a

near-optimal path.

7.4.1 Why it’s Hard

Recall that for a simple Viterbi graph, we found the optimal path using dynamic

programming. We would like to use a similar approach for the more general case

of Grouped-State Viterbi Graphs. For simple Viterbi graphs, we defined a variable

δs(t), which recorded the score of the highest scoring path from the start node q0 to

the node qt,s. This variable can be calculated recursively; and can then be used to

find the best overall state sequence.

Figure 7.4 illustrates how δs(t) can be calculated recursively. The highest scoring

path through node qt,s must pass through node qt−1,s′ , for some s′ ∈ S. If we can

determine which of these source nodes is part of the highest scoring path, then we

can simply calculate δs(t) as δs∗(t − 1)vs∗s(t). In order to determine which of the
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Figure 7.5: Choosing the Best Path in a Grouped State Viterbi Graph. This
diagram shows a portion of a Grouped State Viterbi Graph, illustrating the difficulty
in choosing the best incoming path. This diagram corresponds to the portion of a
Viterbi Graph shown in figure 7.4.

source nodes is part of the highest scoring path, note that:

arg max
pathi

(score(pathi)) = arg max
pathi

δsi
(t− 1)vsis(t)φs(t) (7.19)

= arg max
pathi

δsi
(t− 1)vsis(t) (7.20)

Thus, we can determine the best path without knowing the max backward score

φs(t), since the value of φs(t) does not depend on the choice of pathi. This allows us

to recursively calculate δs(t) given only v and δsi
(t− 1).

But in Grouped-State Viterbi Graphs, we are not able to determine the best

path without knowing the max backward scores φs(t). To understand why, compare

Figure 7.4 to Figure 7.5, which shows a comparable portion of a Grouped-State

Viterbi Graph. As with simple Viterbi Graphs, the best group-node path must pass

through group-node gt−1,i for some group i. So we are interested in determining

which of these group-node paths has the highest score:

arg max
pathi

(score(pathi)) = arg max
pathi

∑
s′∈gt−1,i

∑
s∈gt,1

δ′s(t− 1)vs′s(t)φs(t) (7.21)
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But there is crucial difference between Equation 7.19 and Equation 7.21: φs(t) is

no longer a constant value, so we can not drop it from the arg max.

An Example

An example will help illustrate the problem. Consider the case where we are per-

forming global voting between two models, illustrated in Figure 7.5. The paths that

pass through node qt,s1 correspond to model M1, while the paths that pass through

node qt,s2 correspond to model M2. The overall score that we are trying to maximize

will be the sum of one score from each model:

From M1 From M2

score(path1) = δs1(t− 1)vs1s1(t)φs1(t) + δs2(t− 1)vs2s2(t)φs2(t)

score(path2) = δs3(t− 1)vs3s1(t)φs1(t) + δs4(t− 1)vs4s2(t)φs2(t)

The max backward scores, φ, essentially put a “weight” on each of the models,

which tells us how much the portion of the score from that model will influence the

overall score. This reflects the fact that, if one model’s score for the best value is

significantly higher than the other, then any changes to that model’s score will have a

correspondingly larger effect on the overall score. For example, if the highest-scoring

path gets a score of 0.001 from model M1, and a score of 0.0001 from model M2, for

a total score of 0.0011, then a change to M1’s score, such as increasing it by a factor

of 1.1, will have a much larger effect than if the same change were made to model

M2’s score.

7.4.2 Subnode Weightings

Thus, the reason that we can’t determine which incoming path will maximize the

score is that we don’t know how much weight to give to the paths through each

of the group-node’s subnodes. These weights are determined by the max backward

scores φ. But it’s not necessary to know the φ values themselves; we only need to
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know their relative values.

For the case where each group node has two subnodes, define R to be the ratio

of the two subnodes’ φ scores:

Rg(t) = φs1(t)/φs2(t) (g = {s1, s2}) (7.22)

Given the value of Rg(t), we can now determine which of the incoming paths will

generate the highest score:

arg max
pathi

(score(pathi)) =

arg max
pathi

∑
s∈gt−1,i

δ′s(t− 1)vss1(t)φs1(t) + δ′s(t− 1)vss2(t)φs2(t) =

arg max
pathi

∑
s∈gt−1,i

δ′s(t− 1)vss1(t)
φs1(t)

φs2(t)
+ δ′s(t− 1)vss2(t) =

arg max
pathi

∑
s∈gt−1,i

δ′s(t− 1)vss1(t)Rg(t) + δ′s(t− 1)vss2(t)

7.4.3 Pruning Candidate Incoming Paths with R

Of course, there is no no tractable way to calculate Rg(t). But we can make use

of the fact that the score of an incoming path depends on this single variable to

prune the set of incoming paths under consideration. Figure 7.6 illustrates how this

works. Corresponding to each incoming path, we can construct a graph showing the

relationship between the value of Rg(t) and the overall score that would be achieved

by selecting that path. Figure 7.6 (a) shows such a graph, plotting Rg(t) vs. the

overall score of the path (normalized by φs1(t) + φs2(t)). Note that this graph is

linear, assuming we plot the graph using an x axis where x = 1− 1/(R + 1).

Thus, corresponding to each incoming path we can plot a single line segment.

Figure 7.6 (b) adds the line segment for a second incoming path. Since we are

interested in selecting the incoming path that maximizes the overall score, we can

now tell that the incoming path added in (a) will be superior to the incoming path
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Figure 7.6: Pruning Candidate Incoming Paths with R. In graph (a), we plot
R vs. the overall score for an incoming path, given that value of R. In graphs (b) and
(c), we plot the same function for two more incoming paths. Since the line segment
added in graph (c) is not maximal for any value of R, it can be safely pruned.
At the left edge of the graph, where R = 0, the score function reduces to score/φs2(t);
i.e., when R = 0, all of the weight is given to model M2. At the right edge of the
graph, where R = inf, the score function reduces to score/φs1(t), giving all of the
weight to model M1. In the center of the graph, where R = 1, equal weight is given
to both models.
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added in (b) iff R < 0.95 (the crossover point).2 In Figure 7.6 (c), we add the line

segment for a third incoming path. However, this new line segment is not maximal

for any value of R, and so it can be safely pruned.

As this example illustrated, we can prune any incoming paths whose correspond-

ing line segment is not maximal for any value of R. As we add more incoming

paths, these line segments will form a convex “bowl shaped” top surface, defining

the maximal score that can be achieved for different values of R. The more segments

become a part of this concave surface, the more likely it becomes that the addition

of a new segment will result in the pruning of at least one segment. Thus, in most

practical problems, the number of segments in the concave surface should remain

relatively small, and the number of paths that we need to keep track of will not grow

exponentially.

Extension to More than Two Subnodes

The pruning analysis presented so far applies only to Grouped State Viterbi Graphs

where each group-node contains two subnodes. In graphs where group-nodes have

more subnodes, we will have more than two φ values, so a single R value will not

suffice. However, we can make use of the same basic approach, by extending the

pruning graph to three or more dimensions. In particular, for a Grouped State

Viterbi Graph where each node has at most n subnodes, we will need to construct a

graph with n − 1 independent variables, describing the relative weight given to the

different subnodes, and one dependent variable, indicating the resulting score. Each

incoming edge will be represented by an n−1-dimensional hyperplane on this graph;

and the set of hyperplanes that contribute to the maximal score values will form an

n-dimensional bowl.

2The normalization factor φs1(t) + φs2(t) can be ignored when maximizing the score, since it is
a constant value.
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Nodes per Avg # Max #
Grouped State Elements Elements

1 1 1
2 8.3 24
3 48.2 123
4 89.3 609

Table 7.1: Number of Line Segments or Hyperplanes in the Pruning Graph.

Experimental Results

In order to test the hypothesis that the number of line segments stays manageable, I

constructed a series of randomly generated Grouped State Viterbi graphs, and found

the highest scoring group sequence in each graph, using a variant of the Viterbi

algorithm that uses the pruning techniques described in this section. Table 7.1 lists

the results.

7.4.4 Approximate-Best Variant

Although my experiments suggest that the number of line segments or hyperplanes

will remain manageable for many real-world problems, there still exist problems for

which this pruning approach will not yield any gains. Figure 7.7 illustrates how this

can happen. The exact algorithm described in the previous section must keep every

incoming path that is maximal for any value of R, even if the range of R values for

which it is maximal is very small. Figure 7.7 shows how it is possible to construct a

large number of line segments, each of which is maximal for only a very small range

of R values. In such situations, the exact pruning algorithm is forced to keep track

of all incoming paths; and the number of incoming paths can grow to be exponential.

In these cases, it may still be possible to find a value whose score is close to the

best value’s score by selectively pruning incoming paths. In particular, when we

prune an incoming path that is maximal for some value of R, we may be throwing

away the best path; but we can still determine an upper bound on how much that
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Figure 7.7: Problematic Case for Pruning.

pruning will lower the score of the value we find, compared to the optimal value. To

understand how, see Figure 7.8, where there are three incoming paths contributing

to the pruning graph. Consider the case where we prune path b. In the worst case,

the actual best-scoring path would include path b, and would occur at the R value

where b’s line segment is the greatest distance from any other line segment. This

occurs at around R = 0.8, where the line segments for a and c cross. In this worst-

case scenario, the score of the best found value will drop by the difference between

b’s value and a or c’s value at R = 0.8.

Thus, as long as we restrict ourselves to only prune paths whose corresponding

line segments are maximal in a small range of R values, and whose value is not

much higher than the surrounding segments, we can limit the potential loss in score

incurred by pruning.

7.5 Global Voting with Multiple Encodings

Sections 7.3 and 7.4 showed how multiple models that all use the same encoding

could be combined into a single model via global voting. In this Section, I will show

how this approach can be extended to the case of combining multiple models with
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Figure 7.8: Using Pruning to find the Approximate-Best Value.

different encodings. Following on the work in Chapter 4, I will assume that each

model’s encoding is represented concretely as a Finite State Transducer that maps

from canonical tag strings to encoded tag strings. The basic approach that we will

use to combine the individual models is:

1. Compute the Viterbi graph for each model.

2. Use each model’s FST to transform its Viterbi graph into a Grouped State

Viterbi Graph, whose state groups correspond to states in the canonical rep-

resentation.

3. Combine these Grouped State Viterbi Graphs into a single graph, by combin-

ing the individual graph’s state groups and copying the transitions from the

individual graphs.

4. Apply the pruning algorithm described in Section 7.4 to find the optimal group

sequence in the combined Grouped State Viterbi Graph.

As a running example, I will consider the voted combination of two systems:

one using the IOB1 encoding, and the other using the IOE2 encoding.3 The FST

3I will take IOB1 to be the canonical encoding. As discussed in Chapter 4, the choice of canonical
encoding does not have an effect on the expressive power of FSTs as a means of expressing encodings.
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O
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(b)(a)

IOB1    IOE2IOB1    IOB1

Figure 7.9: FSTs Representing the IOB1 and IOE2 Encodings. We will use
these two encodings as an example to illustrate the global voting algorithm with
multiple encodings. Both FSTs are expressed with respect to the canonical encoding
IOB1.

representations for these two encodings are shown in Figure 7.9. In order to help

distinguish the “I” and “O” tags used by IOE2 from those used by IOB1, I will use

the lower case letters “i” “o” and “e” to denote the IOE2 tags; and the upper case

letters “I” “O” and “B” to denote the IOB1 tags. The Viterbi graphs for these two

models are shown in Figure 7.10.

7.5.1 Transforming Viterbi Graphs into Canonical Grouped

State Viterbi Graphs

Before we can perform global voting between models that use different encodings,

we must first convert their Viterbi graphs into a common format. This will allow us

to combine their individual Viterbi graphs to form a new graph where each model’s

probability estimate for a given value is represented by the same path (through group

nodes).

I will refer to this common format as the Canonicalized Viterbi Graph for a

given model. It consists of a Grouped State Viterbi Graph, with the following three

properties:

1. Each path p through the graph’s subnodes corresponds to one structured out-

put value value(p).
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Figure 7.10: Viterbi Graphs for the IOB1 and IOE2 Encodings. These two
Viterbi graphs can not be directly combined, because they use incompatible states:
the IOB1 graph uses the three states I, O, and B, while the IOE2 graph uses the states
i, o, and e. We must therefore transform the graphs into a common format before
they can merged.
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2. The total score of path p is equal to the score assigned by the original Viterbi

graph to value(p).

3. For each path p, the corresponding value value(p) is encoded by the sequence

of group node labels that the path passes through.

Property (2) ensures that the new canonicalized graph encodes the same probabil-

ity distribution as the original Viterbi Graph. Property (3) will allow us to combine

this canonicalized graph with other model’s canonicalized graphs, by simply merging

the corresponding group nodes.

In order to construct the Canonicalized Viterbi Graph, we will make use of the

FST representing the model’s encoding. Recall that this FST translates from tag

sequences encoded with the canonical encoding to tag sequences encoded with the

model’s encoding. We will begin by normalizing this FST such that every edge

contains exactly one input symbol. Since the FST’s input symbols are tags in the

canonical encoding, this means that each time we step through the FST, we will

consume exactly one canonical tag, and generate zero or more encoded tags. The

two FSTs in 7.9 are already normalized.

We will represent each output value in the Canonicalized Viterbi Graph by mod-

elling the path that is taken through the encoding FST for that value. In particular,

for each node in the path through the FST, the Canonicalized Viterbi Graph will

contain a corresponding subnode; and the score of the path through these subnodes

will equal the score of the encoded value.

Each subnode in the Canonicalized Viterbi Graph must contain enough informa-

tion about the process of running the FST that we can calculate appropriate edge

scores between subnodes. In particular, each subnode must keep track of:

• The current state of the FST.

• The most recently consumed canonical tag. This determines which group the

node will belong to.
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• The most recently generated encoded tag. This determines which of the scores

from the original Viterbi Graph we will use to compute the score of outgoing

edges from this subnode in the new Canonicalized Viterbi Graph.

• The t index of the most recently consumed canonical tag. This determines

in which time slice the node will be located in the new Canonicalized Viterbi

Graph.
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Thus, we will define each subnode to be a tuple 〈s, t, tagc, tage〉, where s is a

state in the encoding FST; t is a time value; tagc is a canonical tag; and tage is

an encoded tag. We do not need to include all possible subnodes; instead, we can

determine which subnodes will be used by exploring the paths that the FST can take.

The score of an edge in the new Canonicalized Graph is computed by examining the

sequence of encoded tags generated by the the FST during the corresponding step;

and multiplying their score in the original Viterbi graph. This algorithm is shown

in detail in Figure 7.12; and the resulting Canonicalized Viterbi Graph for an IOE2

model is shown in Figure 7.11.

7.5.2 Combining Canonical Grouped State Viterbi Graphs

Once each model’s Viterbi Graph has been converted to a Canonical Grouped State

Viterbi Graph, we can perform weighted voting by simply merging the individual

Canonical Graphs into a single graph. In particular, the merged graph’s nodes and

edges are the union of the individual models’ Canonical Graphs; and the groups are

formed by merging the corresponding groups from each of the models. If we wish

to apply different weights to the different models, we can do so by modifying each

graph’s initial edge weights to include the model weightings, as we did in the case of

global voting between models with a single encoding.

Once the merged graph has been created, we can apply the algorithms described

in Section 7.4 to find the highest-scoring path through group nodes. Decoding the

corresponding sequence of canonical tags will generate the highest-scoring output

value under the weighted-voting model.

7.6 Proposed Work

For my dissertation, I plan to apply the global voting methods described in this

Chapter to the chunking system described in Chapter 4 and to the SRL system
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def canonicalize_viterbi_graph(graph, fst):

# Canonicalize the FST such that each edge’s input string contains
# exactly one symbol. Output strings may be empty, or may contain
# multiple characters.
fst.canonicalize(input_len=1)

# Create the new Grouped State Viterbi Graph. Seed it with an
# initial start node at time 0.
gsvg = GroupedStateViterbiGraph()

initial_node = Node(state=fst.initial_state, t=0,

c_tag=START, e_tag=START)

gsvg.add_node(initial_node, group=START)

# For each time step, examine all nodes at that time step. Each
# node corresponds to a possible state of the FST as we convert an
# output value.
for t in range(1, graph.T):

for node in gsvg.nodes(t=t):

for fst_edge in fst.outgoing_edges(node.state):

score = 1

e_tag = node.e_tag

offset = node.state.outputoffset

for e_tag2 in fst_edge.output:

offset -= 1

score *= graph.score(e_tag, e_tag2, t-offset)

e_tag = e_tag2

new_node = Node(state=fst_edge.dest, t=t,

c_tag=fst_edge.input, e_tag=e_tag)

gsvg.add_node(new_node, group=fst_edge.input)

gsvg.add_edge(node, new_node, score)

# Return the complete graph.

return gsvg

Figure 7.12: Canonical Grouped State Viterbi Graph Construction Algo-
rithm.
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described in Chapter 6. I will then compare the performance of these voting models

to the individual underlying models; and to models that perform voting locally rather

than globally. I also plan to try adapting the hill-climbing algorithm described in

Chapter 4 to produce multiple complementary encodings, by searching for a set of

encodings that individually perform well, but that are substantially different from

one another.
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Chapter 8

Adding Non-Local Output

Features to Structured Viterbi

Models

8.1 Introduction

The effects of output encoding transformations can be divided into two general

classes: local effects, which influence the difficulty of learning individual sub-problems,

and global effects, which determine the model’s ability to learn long-distance depen-

dencies. This chapter explains how the output encoding affects which long-distance

dependencies can be learned; and shows how transformations to the output encod-

ing can expand the set of long-distance dependencies a model can learn (a positive

global effect). When done in a naive way, these transformations would split the

data for individual sub-problems, aggravating the sparse data problem (a negative

local effect). But by being careful about exactly how the transformation is done,

it is possible to achieve the positive global effects while avoiding the negative local

effects.
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8.2 Structured Viterbi Models

Hidden Markov Models, PCFGs, Conditional Random Fields, and MEMMs are all

members of a class of probabilistic models known as Structured Viterbi Models1.

These models define a unique graphical structure corresponding to each possible

output value. They specify the probability of a given output by first computing

local scores that evaluate the plausibility of individual nodes or cliques in the graph;

and then combining those scores, generally via multiplication or addition.

One disadvantage shared by all models in this class is that they may not contain

features which depend on non-local pieces of output structure. More precisely, the

score of an output may not depend in any non-compositional way on any two nodes

that are not connected in the graph representing that output. Of course, we can

get around this restriction by adding edges to the graph; but doing so can result in

intractable learning and prediction problems. And in order to express some non-local

features, we would essentially need to fully connect the graph. Examples of features

that depend on the output in non-local ways include the following. (Notation is

summarized in Figure 8.1.)

In a sequence tagging task:

• Are there any elements with tag Ti to the left of this tag?

• Are there any elements with tag Ti to the right of this tag?

• How many elements with tag Ti are to the left of this tag?

• How many elements intervene between this element and the closest element

that was tagged with Ti?

• What was the lexical item of closest element to the left that was tagged Ti?

In a parsing task:

• Is this constituent dominated (at any distance) by a node with label Ti?

1The word Viterbi is used here to distinguish this class of models from other types of Structured
prediction models, such as transformation-based models (e.g., Brill’s tagger).
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The set of node labels T = {Ti}
Augmented node labels T+ = {Ti[p1=vi,1, . . . , pk=vi,k]}
Input value (sequence tasks) ~x = (x1, . . . , xT )
Output value (sequence tasks) ~y = (y1, . . . , yT ) (yt ∈ T or yt ∈ T+)

Figure 8.1: Notation for Augmenting Node Labels.

• GPSG-style “slashed category” features.

This chapter presents a method for adding features that depend on non-local

pieces of output structure to Structured Viterbi Models.

8.3 Transforming the Output Graph

An important common feature of Structured Viterbi Models is that all scores are

computed over local graphical regions (nodes or cliques), and then combined using

some simple technique (multiplication or addition). Thus, the only way that we can

add features that depend on non-local aspects of the output will be to make those

features available at local regions. This can be done by transforming the graphical

representation we use for output values.

8.3.1 Adding Edges

As was mentioned in the introduction, the simplest way to turn non-local features

into local ones is by simply adding edges to the graph. However, this approach comes

at a cost: the more densely-connected we make the graph structures, the more likely

it becomes that training and prediction will be intractable. For example, Figure 8.2

shows that adding a relatively simple feature can easily result in a fully-connected

graph.
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Figure 8.2: Adding Edges. The graph in (a) shows a typical output graph for a
sequence tagging model. The graph in (b) shows what edges we would need to add
if we wanted to include a feature that answers the question “are there any elements
with tag Ti to the left of this tag” at each node. In particular, this question can
not be answered without looking at the tags of all output elements that have been
generated before; so we must add an edge from each element to every element that
precedes it, resulting in a fully-connected graph.

8.3.2 Augmenting Node Labels

But adding edges isn’t our only option. In fact, we can transform the output value

graph in any way we wish, as long as each output value is encoded by exactly

one graph. Thus, one approach to the problem of adding non-local output features

is to add information content to the labels in a graph. Information can then be

propagated around the graph in a global manner, using chains of local regions as

a conduit. In particular, we can subdivide each existing label Ti into new labels

Ti[p=v1], . . . , Ti[p=vn], where p is some augmentation variable that we wish to prop-

agate; and v1, . . . , vn is the set of values that p may take.

For example, if we want to add a feature that answers the question “are there

any elements with tag Ti to the left of this tag,” then we can do so by subdivid-

ing each existing tag Tj into new tags Tj[seen(Ti)=True] and Tj[seen(Ti)=False].

After modifying the output graphs, the information needed for the desired feature

is available locally; and so the feature can be added. In particular, the feature

should be true for tags of the form Tj[seen(Ti)=True]; and false for tags of the form
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Tj[seen(Ti)=False].

8.4 Training with Augmented Node Labels

Although augmenting node labels allows us to add non-local output features, it also

has implications for training: if we are not careful, then splitting node labels will

split our training data, leading to an increase in sparse data problems.

The simplest way to train a model with augmented node labels is to treat

each augmented label as an atomic constant; and use the existing learning meth-

ods. For example, if we wish to augment our model with the variable seen(Ti),

described above, then we would replace every tag Tj in the training data with

Tj[seen(Ti)=True] if there is at least one Ti preceding it; and with Tj[seen(Ti)=False]

otherwise. We would then apply the original learning method to the transformed

training corpus. Using this simple approach, the learning method has no knowledge

of the internal structure of the augmented labels. This gives rise to two problems:

1. Constraints on the labels of adjacent nodes are not captured.

2. Feature weight estimates are based on augmented labels, which may not have

enough training data to support accurate learning (especially for augmenta-

tions involving lexical information).

8.4.1 Constraints

There are typically strong constraints on the augmented labels of adjacent nodes.

For example, the seen variable will always follow the local constraints listed in Fig-

ure 8.3. Any output value that does not meet these constraints should be assigned

a probability of zero. However, these constraints are not directly available to the

learning model; it will need to learn them from scratch. This increases the number

of parameters the model must learn, which correspondingly increases the amount of

116



1. For the first element, seen(Ti) is false. I.e.:

y1 = Tj[seen(Ti)=False]

2. If the previous tag was Ti, then seen(Ti) is true. I.e.:

if yt = Ti[seen(Ti)=v] then yt+1 = Tj[seen(Ti)=True]

3. If the previous tag was not Ti, then seen(Ti) is copied from the previous
augmented tag. I.e.:

if yt = Tj[seen(Ti)=v] and Tj 6= Ti then yt+1 = Tk[seen(Ti)=v]

Figure 8.3: Constraints on seen. Any output value that does not meet these
constraints should be assigned a probability of zero. In this example, the constraints
completely determine the value of the augmentation variable; however, this need
not be the case in general. Also, note that the constraints do not have any inherent
notion of “direction” – this is necessary if they are to be used with undirected models
like CRFs.

training data needed to accurately model the task. And in cases where augmenta-

tion variables can take on a large number of values (e.g., lexical information), the

learning model may never fully learn the constraints.

An analogous problem arises when we attempt to use the model for prediction.

Since the dynamic programming algorithms used for prediction do not have access

to the constraints, they must explore all possible sequences of augmented tags. But

the total number of augmented tags can grow quite rapidly: if each tag is augmented

with k variables, each taking n values, and the graph contains cliques of m nodes,

then the running time for prediction will be increased by a factor of (nk)m.

The solution is fairly straight-forward: we should provide the learning model and

the prediction algorithm with information about the constraints on each augmenta-

tion variable’s values.2 In the case of the learning model, this can be done by fixing

the weights between any two adjacent non-compatible tags to −∞. In the case of

the prediction algorithm, this can be done by exploring only those tag sequences

that are consistent with the constraints.

2This has the additional benefit that we don’t need to worry about what to do if an “invalid
output” is generated by the learned model.
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8.4.2 Data Splitting

The second problem with treating the augmented tags as atomic constants is that it

results in a significant increase in data sparsity. In particular, splitting a tag implies

splitting the training data for that tag. If each tag is augmented with k variables,

each taking n values, then splitting the tags will decrease the amount of training

data available for each tag by a factor of nk (on average). These splits will tend to

decrease the accuracy of the learned model because although feature weights depend

to some extent on a node’s annotations, they usually depend much more strongly

on the node’s base label. But with appropriate adjustments to the learning model’s

local scoring function, it is not necessary to actually split the training data.

Avoiding Sparse Data in HMMs

Recall that all Structured Viterbi Models use local scoring functions to compute

the plausibility of individual cliques in the graph; and then combine those scores.

HMMs define the overall score of an output to be the product of local scores, where

local scores have the forms P (yt|yt−1) (for adjacent output nodes) and P (xt|yt) (for

adjacent input and output nodes):

P (x, y) =
∏

t

P (yt|yt−1)P (xt|yt) (8.1)

When we augment the node labels (yi), we are essentially increasing the size of the

distributions P (yt|yt−1) and P (xt|yt). In particular, the range of yi is expanded from

T to T+, where |T+| ≈ nk|T |. If we continue to use the same local models for

these distributions3, then the amount of data available to train each condition will

decrease. But we can allow the local models to share data between augmented labels

3Typically MLE for P (yt|yt−1) and Naive Bayes for P (xt|yt).
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simply collapsing out the distinctions made by the augmentations:

P (yt|yt−1) ≈ P (strip(yt)|strip(yt−1)) (8.2)

P (xt|yt) ≈ P (xt|strip(yt)) (8.3)

strip(Ti[· · · ]) = Ti (8.4)

In a sense, this appears to be a step backward. It brings us back to where we

started from: the local models will be modelling exactly the same set of data that

they did in the original (unaugmented) system. Collapsing out the augmentations

makes them unavailable to the local models, so we can’t use them to define features.

But now we have access to two local models: an augmented model, which can

use the non-local features but may suffer from data sparsity; and a collapsed model,

which does not have access to the new features but which is more robust. We can

combine these two models via local voting (e.g., linear interpolated back-off).

If we add multiple augmentation variables to the output structures, then we can

collapse out different sets of distinctions, and apply voting to the resulting models.

E.g., we could include a model for each augmentation variable pj, which approximates

the local distributions as:

P (yt|yt−1) ≈ P (strippj
(yt)|strippj

(yt−1)) (8.5)

P (xt|yt) ≈ P (xt|strippj
(yt)) (8.6)

strippj
(Ti[. . . , pj = vi,j, . . . ]) = T [pj = vi,j] (8.7)

It’s worth noting that a number of augmented PCFG parsing models (such as

Collins’ parser) can be described in exactly these terms: they augment node labels

with a variety of non-local information, such as the head word, the head word’s part

of speech, and subcategorization frame information; they define constraints between

those pieces of information; and they use some form of local voting to exploit the

trade-off between the lower bias of more fine-grained local models with the lower

variance of more general local models.
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Avoiding Sparse Data in CRFs

We can use a similar approach to avoid the sparse data problems that arise from

splitting tags in Conditional Random Fields. CRFs define the overall score of an

output to be (the log of) the sum of local scores, where each local score is the sum

of a weighted feature vector:

P (y|x) ∝ log

( ∑
c∈cliques

∑
i

wifi(c)

)
(8.8)

Feature weights are set by maximizing the total log likelihood of the training

data. Typically, features are defined as binary functions pairing a property of the

local input value with a set of node labels (one for each node in the clique). For

example, in a typical linear chain CRF, each feature has the form:

f(〈xt, yt−1, yt〉) =

1 if property(xt) and 〈yt−1, yt〉 = 〈Ti, Tj〉

0 otherwise

(8.9)

Where property is some property of the input element xt, and Ti and Tj range over

all tags. Since a feature is defined for every pair of node labels, augmenting the node

labels will increase the number of features. In particular, the number of features

per property will increase from |T | to |T+|, where |T+| ≈ nk|T |. Each of these new

features will be supported by correspondingly less training data.

But CRFs are not required to use features of the form shown in equation (8.9).

In principle, CRF features fi(c) may be defined as any function over the clique c.

Thus, we can collapse out the distinctions made by augmentations, just as we did

with HMMs, by defining features using strip(Ti):

f(〈xt, yt−1, yt〉) =

1 if property(xt) and 〈yt−1, yt〉 = 〈strip(Ti), strip(Tj)〉

0 otherwise

(8.10)

As was the case with HMMs, this returns us to our original (unaugmented) model.

I.e., defining an augmented model whose features are conditioned on stripped tags
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is identical to using the unaugmented model. But unlike HMMs, CRFs can directly

combine the augmented features with the collapsed features in a single model. Thus,

there is no need to define separate local models, and combine them using voting; in-

stead, we can simply provide the CRF with some features that depend on augmented

labels, and other features that depend on collapsed labels.

If we add multiple augmentation variables to the output structure, then we can

define features that collapse out different sets of distinctions. E.g., we could include

features with the following forms:

f(〈xt, yt−1, yt〉) =


1 if property(xt) and

〈yt−1, yt〉 = 〈strippj
(Ti), strippj

(Tj)〉

0 otherwise

(8.11)

f(〈xt, yt−1, yt〉) =


1 if property(xt) and

〈yt−1, yt〉 = 〈strip(Ti), strip(Tj)〉

0 otherwise

(8.12)

strippj
(Ti[. . . , pj = vi,j, . . . ]) = T [pj = vi,j] (8.13)

strip(Ti[· · · ]) = Ti (8.14)

8.5 The Cost of Augmenting Node Labels

The techniques described so far allow us to add features that depend on output in a

non-local way without un-necessarily increasing the number of parameters that the

model needs to learn. But although these techniques will not decrease the perfor-

mance of the model (like more naive methods would), they will increase the running

time needed for both training and prediction.

In particular, the dynamic programming algorithms used for prediction will need

to be run over augmented tags. Since the running time of these algorithms is pro-

portional to |T |m (where m is the clique size), augmenting the tags could in principle
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increase the running time for prediction by as much as (nk)m. However, the con-

straints associated with many augmentation variables will uniquely define (or at least

severely restrict) the possible values for one node label’s annotations, given the oth-

ers. Thus, the increase in running time is more likely to be on the order of nk(m−1).

This increase in running time also affects iterative learning models like CRF, that

must perform tasks similar to prediction at each iteration.

Thus, we must be careful to limit the number of augmentation variables we add to

the output structure. But even a handful of augmentation variables may be sufficient

to allow the model to capture critical long-distance dependencies. And given a small

set of augmentation variables, we can define a large variety of features that depend

on those augmentations in different ways.

8.6 Summary of the Proposed Algorithm

8.6.1 Training

We can train a model that uses features with non-local dependencies on the output

value using the following procedure:

1. Define one or more augmentation variables that provide the desired information

at the appropriate nodes.

• Given an output value, the value of each augmentation variable must be

uniquely defined for each node.

• It must be possible to uniquely define the correct augmentation variable

values for all nodes using only local constraints. A local constraint is a

binary function of the augmented node labels and input values of a local

region (clique) of the graph.

2. Transform the training corpus to use the augmented variables.
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3. Add constraints to the learning models by fixing the weights between any two

adjacent non-compatible labels to −∞.

4. Modify the learning models’ local models to include scoring functions over both

the augmented node labels and the collapsed node labels.

• For HMMs and PCFGs: define a set of local models that estimate prob-

abilities based on counts of different combinations of augmented and col-

lapsed node labels; and combine them with voting methods.

• For CRFs: define features based on different combinations of augmented

and collapsed node labels.

5. Train the modified model using the transformed training corpus.

8.6.2 Prediction

We can then use that model to predict the most likely output value for new inputs

by using the following procedure:

1. Use a dynamic programming algorithm to run the trained model on a new

input value.

• Use the constraints to limit which node labels the dynamic programming

algorithm explores at each step.

2. Discard the annotations, and return the output value corresponding to the

resulting graph.

8.7 Conclusions

In Structured Viterbi Models, output node labels serve (at least) two purposes:

first, they are used as a parameter to define local scoring functions; and second, they
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are used as an information channel, to allow information to flow between different

locations in the graph. Furthermore these two purposes are separable. In particular,

it is possible to enrich the information channels without splitting the parameters of

the local scoring functions. Of course, the parameters of local scoring functions will

need to be expanded to some extent, to allow them to use the enriched information

channels; but this can be done in a controlled way, rather than by simply splitting

all parameters.

8.8 Proposed Work

For my dissertation, I plan to evaluate the effect of this algorithm, on both per-

formance and run-time, by using augmentation variables to add manually selected

classes of non-local features to existing state-of-the-art linear chain CRF systems. I

also plan to combine this algorithm with the hill-climbing system that was described

in Chapter 4. In particular, constraints can be defined based on the FST that trans-

forms canonical encodings to new encodings; and operations that modify an FST by

replacing an existing label with a new label, such as output relabeling and feature

specialization, can be changed to augment the label rather than replace it. This

should improve the hill-climbing system’s performance, by allowing it to introduce

new long-distance output dependencies without needing to split the training data

for local sub-problems.
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Chapter 9

Summary of Proposed Work

9.1 Improving Chunk Encodings via Hill

Climbing

As discussed in Chapter 4, the performance of state-of-the-art NP chunkers is very

close to the upper limit imposed by inter-annotator accuracy. I therefore plan to focus

on the task of Biomedical Named Entity Detection, where there is more headroom for

improvement. I will adapt my hill-climbing system to this new domain by defining a

new CRF chunker, with features based on state-of-the-art Biomedical Named Entity

systems; and modifying the hill-climbing system to use this new chunker.

One issue with the current hill-climbing algorithm is that its search is fairly undi-

rected: it simply chooses modification operations at random. I therefore plan to carry

out a number of experiments designed to provide the hill-climbing search algorithm

with more direction. First, I will perform several experiments that explore factors

influencing the impact of existing modification operations on system performance;

and use those experiments to provide improved guidance to the hill-climbing search.

I will then experiment with the use of problem-driven learning and unsupervised

clustering to provide additional guidance to the hill-climbing direction.
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9.2 Transforming Semantic Roles via SemLink

Chapter 5 described several preliminary experiments which suggest that mapping

PropBank semantic roles to a more coherent set of role labels may improve both

performance and the ability to generalize for SRL systems. For my dissertation, I

will further explore this hypothesis by performing several additional experiments that

evaluate the effect of transforming role labels via the SemLink mapping. First, I will

repeat the experiments described in Section 5.5.2 on the remaining arguments (Arg0

and Arg3-Arg5). Next, I will transform the entire corpus to use VerbNet thematic

role labels; and train an SRL system in that transformed space. I will evaluate this

new SRL system in two ways: first, I will try mapping its results back to the space of

PropBank labels, and compare it with the baseline system with regard to PropBank

labelings; and second, I will apply the mapping to the output of the baseline SRL

system, and compare the performance of the two systems in the transformed space

of VerbNet thematic role labelings. This second evaluation is justified by the fact

that VerbNet role labels may be more useful that PropBank labels: since they are

not verb-specific, they are more amenable to use with inferencing. Finally, I will

evaluate the SemLink mapping by comparing the effect of transforming via SemLink

to the effect of transforming via alternative mappings, such as a mapping based on

the role label descriptions in the PropBank frames files.

9.3 Encoding Semantic Role Labeling Constraints

Chapter 6 described two baseline SRL systems which are incapable of directly learn-

ing constraints and dependencies between different arguments. However, by trans-

forming the output encoding used by these systems, we can provide them with the

information necessary to learn these long-distance relationships. I therefore plan to

apply the hill-climbing algorithm described in Chapter 4 to these two baseline SRL

systems. The FST modification operations already defined for the chunking task
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will be used as-is. It may also be helpful to add a few new modification operations

that are specialized to the SRL task. I will then compare the performance of the

system produced by the hill-climbing algorithm with the performance of the baseline

system, and with the performance of existing systems that use re-ranking or other

post-processing steps to enforce constraints.

9.4 Global Voting

For my dissertation, I plan to apply the global voting methods described in Chap-

ter 7 to the chunking system described in Chapter 4 and to the SRL system de-

scribed in Chapter 6. I will then compare the performance of these voting models to

the individual underlying models; and to models that perform voting locally rather

than globally. I also plan to try adapting the hill-climbing algorithm described in

Chapter 4 to produce multiple complementary encodings, by searching for a set of

encodings that individually perform well, but that are substantially different from

one another.

9.5 Non-Local Output Features

Chapter 8 presents a method for adding features that depend on non-local pieces of

output structure to Bayesian Models. For my dissertation, I plan to evaluate the

effect of this method, on both performance and run-time, by using augmentation

variables to add manually selected classes of non-local features to existing state-of-

the-art linear chain CRF systems. I also plan to combine this algorithm with the

hill-climbing system that was described in Chapter 4. This should improve the hill-

climbing system’s performance, by allowing it to introduce new long-distance output

dependencies without needing to split the training data for local sub-problems.
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9.6 Proposed Schedule

Chunking: February 2007 - September 2007

02/07 - 03/07 Adapt the hill-climbing algorithm to the Biomedical Named

Entity Detection task. (Section 9.1)

04/07 - 06/07 Update the hill-climbing algorithm to make use of the method

for adding non-local output features. (Section 9.5)

07/07 - 09/07 Experiments to provide the hill-climbing search algorithm

with more direction. (Section 9.1)

Semantic Role Labeling: October 2007 - February 2008

10/07 - 11/07 Experiments that evaluate the effect of transforming semantic

role labels via SemLink. (Section 9.2).

12/07 - 02/08 Apply the hill-climbing algorithm to semantic role labeling.

(Section 9.3).

Voting: March 2008 - May 2008

03/08 - 05/08 Experiments to evaluate the global voting algorithm.

(Section 9.4).

Dissertation: May 2008 - June 2008

05/08 - 06/08 Write dissertation.

06/08 Dissertation defense.
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Appendix A

Finding the Optimal Group

Sequence is NP-Hard

As mentioned in Section 7.4, the problem of finding the optimal group sequence

in a Grouped-State Viterbi Graph is NP-hard in the general case. This appendix

presents a proof of that result. It is loosely based on the proof in [5], which considers

the analogous problem of finding the most probable string output for a stochastic

random grammar.

To show that finding the optimal group sequence is NP-hard, we show how the

NP-complete problem of 3-SAT can be reduced to this problem in polynomial time.

3-SAT is the problem of determining whether there is any assignment to a fixed set

of variables {v1, . . . , vn} that makes a given boolean equation true. The boolean

equation is restricted to have the form:

(x1,1 ∨ x1,2 ∨ x1,3) ∧ . . . ∧ (xk,1 ∨ xk,2 ∨ xk,3) (A.1)

where xi,j ∈ ({v1, . . . , vn} ∪ {v1, . . . , vn}).

In order to transform 3-SAT into the problem of finding an optimal group se-

quence through a Grouped-State Viterbi Graph, we will show how a graph can be

constructed from the boolean equation, whose highest scoring group path will have
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Figure A.1: Basic Architecture of Graph Corresponding to 3-SAT. Each
variable vi is represented by a single time slice t = i+1. Two groups, “T,” and “F,”
are used to represent the variables’ truth values. Arrows represent paths through
group nodes (as opposed to paths through individual subnodes).

a score of k if the boolean equation is satisfiable; and of less than k if it is not. The

basic structure of this Grouped-State Viterbi Graph is shown in Figure A.1.

Each variable vi is represented by a single time slice t = i + 1. Within each time

slice, the graph contains two groups “T,” and “F,” corresponding to the boolean

values true and false. Thus, each group path through the graph corresponds directly

to an assignment of values to variables.

We will take advantage of this fact by creating a separate subgraph for each

clause in the boolean expression, that will include a single complete path with score

1 through any sequence of groups that satisfies the clause; but will not contain any

complete paths through group sequences that do not satisfy the clause. Since the

score of a group sequence is equal to the sum of the scores of all paths through the

group sequence, the total score will be equal to the number of clauses made true by

the group sequence. Thus, the total score of a group sequence will only be equal to

k if all k clauses are made true by the group sequence; and the maximum score of all

group sequences will only be k if there exists such a group sequence (corresponding
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to a variable assignment that satisfies the original 3-SAT problem).

Figure A.2 illustrates how the subgraph corresponding to an individual clause is

constructed, using the clause (v1∨v3∨v5) as a concrete example. First, we construct

a subgraph of the form shown in Figure A.2(a), which contains two sets of subnodes:

• The unshaded nodes, s, at, and bt, which are fully connected (i.e., every node at

each time slice t is connected to every node at time slice t+1); and which include

the start node. These nodes will be used when we have not yet determined if

the clause is satisfied.

• The shaded nodes, xt, yt, and e, which are fully connected; and which include

the end node. These nodes will be used once we have determined that the

clause is satisfied.

Then in Figure A.2(b), we replace two of the edges with new edges from the unshaded

nodes to the shaded nodes for each variable literal in the clause, at the locations in

the graph where we might determine that the clause is satisfied:

• If vi appears as a positive literal in the clause, then replace edges 〈ai → ai+1〉

and 〈ai → bi+1〉 with edges 〈ai → xi+1〉 and 〈ai → yi+1〉.1

• If vi appears as a negative literal in the clause, then replace edges 〈bi → ai+1〉

and 〈bi → bi+1〉 with edges 〈bi → xi+1〉 and 〈bi → yi+1〉.2

As a result, the graph will contain a path from the start node to the end node for

exactly those group sequences that correspond to variable assignments that make

the clause true.

Finally, we combine the subgraphs for each clause into a single Grouped State

Viterbi Graph, merging the groups from the individual subgraphs; and find the

highest scoring group path through the combined graph. If the score of this group

1If i = T − 1, then add a single edge 〈ai → e〉 instead.
2If i = T − 1, then add a single edge 〈bi → e〉 instead.
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Figure A.2: Construction of the Subgraph Corresponding to a Single
Clause. This figure shows how the subnode corresponding to the clause (v1∨v3∨v5)
is constructed (with n=6 variables). In step (a), we create two disconnected sub-
graphs. The first subgraph (unshaded nodes) contains a single subnode in every
group node except “E”, and is fully connected. The second subgraph (shaded nodes)
contains a single subnode in every group node except “S”, and is fully connected.
In step (b), we add edges from the first graph to the second graph, corresponding to
the variable assignment expressions that will make the clause true (added edges are
shown in bold; removed edges are shown as dotted arrows). As a result, the graph
will contain a path from the start node to the end node for exactly those group
sequences that correspond to variable assignments that make the clause true.
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path is k, then the corresponding 3-SAT problem is satisfiable; and if the score of this

group path is less than k, then the corresponding 3-SAT problem is not satisfiable.

We have shown that the 3-SAT problem can be solved by constructing a cor-

responding Grouped-State Viterbi Graph (in polynomial time), and evaluating the

score of the highest scoring path. Thus, since the 3-SAT problem is NP-hard, the

problem of finding the highest scoring path in a Grouped-State Viterbi Graph must

also be NP-hard.
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[3] Xavier Carreras and Llúıs Márquez. Introduction to the conll-2004 shared task:

Semantic role labeling. In Proceedings of CoNLL, 2004.
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